版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高考立體幾何知識點總結(jié)立體幾何作為高考數(shù)學(xué)的重要組成部分,不僅考查同學(xué)們的空間想象能力,也考驗邏輯推理與計算能力。本文將系統(tǒng)梳理高考立體幾何的核心知識點,力求條理清晰,重點突出,助力同學(xué)們構(gòu)建完整的知識體系,從容應(yīng)對各類題型。一、空間幾何體的結(jié)構(gòu)及其三視圖與直觀圖1.1多面體與旋轉(zhuǎn)體的結(jié)構(gòu)特征理解并掌握常見空間幾何體的結(jié)構(gòu)特征是解決立體幾何問題的基礎(chǔ)。*棱柱:有兩個面互相平行(底面),其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行。按底面多邊形的邊數(shù)可分為三棱柱、四棱柱等。直棱柱的側(cè)棱垂直于底面,正棱柱則是底面為正多邊形的直棱柱。*棱錐:有一個面是多邊形(底面),其余各面是有一個公共頂點的三角形(側(cè)面)。底面是正多邊形,且頂點在底面的射影是底面中心的棱錐稱為正棱錐。*棱臺:用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。由正棱錐截得的棱臺為正棱臺。*圓柱:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體。*圓錐:以直角三角形的一條直角邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的面所圍成的旋轉(zhuǎn)體。*圓臺:用平行于圓錐底面的平面去截圓錐,底面與截面之間的部分;也可看作由直角梯形繞垂直于底邊的腰所在直線旋轉(zhuǎn)而成。*球:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的旋轉(zhuǎn)體。球的任何截面都是圓,過球心的截面是大圓。1.2空間幾何體的三視圖三視圖是觀測者從三個不同位置觀察同一個空間幾何體而畫出的圖形,包括正視圖(主視圖)、側(cè)視圖(左視圖)和俯視圖。*畫法規(guī)則:長對正(正視圖與俯視圖的長度相等且對正)、高平齊(正視圖與側(cè)視圖的高度相等且平齊)、寬相等(側(cè)視圖與俯視圖的寬度相等)。*注意事項:看得見的輪廓線用實線表示,看不見的輪廓線用虛線表示。在繪制時,要注意幾何體的擺放位置與視角。1.3空間幾何體的直觀圖直觀圖是用平面圖形表示空間圖形的一種方法,常用斜二測畫法。*斜二測畫法步驟:1.在已知圖形中建立直角坐標系,通常取互相垂直的x軸和y軸,兩軸交于點O。2.畫直觀圖時,把它們畫成對應(yīng)的x'軸和y'軸,兩軸交于點O',且使∠x'O'y'=45°(或135°),它們確定的平面表示水平面。3.已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成平行于x'軸或y'軸的線段。4.已知圖形中平行于x軸的線段,在直觀圖中保持原長度不變;平行于y軸的線段,長度為原來的一半。*斜二測畫法主要用于繪制水平放置的平面圖形的直觀圖以及簡單幾何體的直觀圖。二、空間幾何體的表面積與體積2.1多面體的表面積多面體的表面積就是各個面的面積之和,即展開圖的面積。*棱柱:表面積=側(cè)面積+2×底面積。直棱柱的側(cè)面積=底面周長×側(cè)棱長。*棱錐:表面積=側(cè)面積+底面積。正棱錐的側(cè)面積=(1/2)×底面周長×斜高。*棱臺:表面積=側(cè)面積+上底面積+下底面積。正棱臺的側(cè)面積=(1/2)×(上底面周長+下底面周長)×斜高。2.2旋轉(zhuǎn)體的表面積*圓柱:表面積=側(cè)面積+2×底面積。側(cè)面積=2πrl(r為底面半徑,l為母線長),底面積=πr2,故表面積S=2πr(r+l)。*圓錐:表面積=側(cè)面積+底面積。側(cè)面積=πrl(r為底面半徑,l為母線長),底面積=πr2,故表面積S=πr(r+l)。*圓臺:表面積=側(cè)面積+上底面積+下底面積。側(cè)面積=π(r+R)l(r、R分別為上、下底面半徑,l為母線長),上底面積=πr2,下底面積=πR2,故表面積S=π(r2+R2+rl+Rl)。*球:表面積S=4πR2(R為球的半徑)。2.3空間幾何體的體積*棱柱:體積V=Sh(S為底面積,h為高)。*棱錐:體積V=(1/3)Sh(S為底面積,h為高)。*棱臺:體積V=(1/3)h(S+√(SS')+S')(S、S'分別為上、下底面積,h為高)。*圓柱:體積V=Sh=πr2h(S為底面積,r為底面半徑,h為高)。*圓錐:體積V=(1/3)Sh=(1/3)πr2h(S為底面積,r為底面半徑,h為高)。*圓臺:體積V=(1/3)h(S+√(SS')+S')=(1/3)πh(r2+Rr+R2)(S、S'分別為上、下底面積,r、R分別為上、下底面半徑,h為高)。*球:體積V=(4/3)πR3(R為球的半徑)。三、空間點、直線、平面之間的位置關(guān)系3.1平面的基本性質(zhì)*公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。(用于判斷直線是否在平面內(nèi))*公理2:過不在一條直線上的三點,有且只有一個平面。(確定平面的依據(jù))*推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。*推論2:經(jīng)過兩條相交直線,有且只有一個平面。*推論3:經(jīng)過兩條平行直線,有且只有一個平面。*公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。(用于判斷兩個平面相交及尋找交線)3.2空間中直線與直線的位置關(guān)系*平行直線:在同一平面內(nèi),沒有公共點?;拘再|(zhì)4(平行公理):平行于同一條直線的兩條直線互相平行。*相交直線:在同一平面內(nèi),有且只有一個公共點。*異面直線:不同在任何一個平面內(nèi),沒有公共點。(判斷方法:過平面外一點與平面內(nèi)一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線)*異面直線所成的角:已知兩條異面直線a,b,經(jīng)過空間任一點O作直線a'∥a,b'∥b,我們把a'與b'所成的銳角(或直角)叫做異面直線a與b所成的角(或夾角)。其范圍是(0°,90°]。若兩條異面直線所成的角是直角,則稱這兩條異面直線互相垂直。3.3空間中直線與平面的位置關(guān)系*直線在平面內(nèi):有無數(shù)個公共點。*直線與平面相交:有且只有一個公共點。*直線與平面平行:沒有公共點。*直線與平面相交或平行的情況統(tǒng)稱為直線在平面外。3.4空間中平面與平面的位置關(guān)系*兩個平面平行:沒有公共點。*兩個平面相交:有一條公共直線。四、直線、平面平行的判定及其性質(zhì)4.1直線與平面平行的判定定理平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。(簡記為:線線平行,則線面平行)*符號表示:a?α,b?α,且a∥b?a∥α。4.2直線與平面平行的性質(zhì)定理一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。(簡記為:線面平行,則線線平行)*符號表示:a∥α,a?β,α∩β=b?a∥b。4.3平面與平面平行的判定定理一個平面內(nèi)的兩條相交直線與另一個平面平行,則這兩個平面平行。(簡記為:線面平行,則面面平行)*符號表示:a?β,b?β,a∩b=P,a∥α,b∥α?β∥α。*推論:如果一個平面內(nèi)有兩條相交直線分別平行于另一個平面內(nèi)的兩條相交直線,那么這兩個平面平行。4.4平面與平面平行的性質(zhì)定理如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。(簡記為:面面平行,則線線平行)*符號表示:α∥β,α∩γ=a,β∩γ=b?a∥b。*其他性質(zhì):*兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。*夾在兩個平行平面間的平行線段相等。五、直線、平面垂直的判定及其性質(zhì)5.1直線與平面垂直的定義如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作l⊥α。直線l叫做平面α的垂線,平面α叫做直線l的垂面。它們唯一的公共點P叫做垂足。5.2直線與平面垂直的判定定理一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。(簡記為:線線垂直,則線面垂直)*符號表示:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α。5.3直線與平面垂直的性質(zhì)定理垂直于同一個平面的兩條直線平行。*符號表示:a⊥α,b⊥α?a∥b。5.4平面與平面垂直的定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直。5.5平面與平面垂直的判定定理一個平面過另一個平面的垂線,則這兩個平面垂直。(簡記為:線面垂直,則面面垂直)*符號表示:l⊥α,l?β?β⊥α。5.6平面與平面垂直的性質(zhì)定理兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。*符號表示:α⊥β,α∩β=l,a?α,a⊥l?a⊥β。六、空間中的角與距離6.1異面直線所成的角(已在3.2提及,此處略作補充)求法:平移法。即通過平移其中一條或兩條直線,使其相交,轉(zhuǎn)化為相交直線所成的銳角或直角。6.2直線與平面所成的角平面的一條斜線和它在平面上的射影所成的銳角,叫做這條直線和這個平面所成的角。*一條直線垂直于平面,所成的角是直角;一條直線平行于平面或在平面內(nèi),所成的角是0°角。*范圍:[0°,90°]。*求法:關(guān)鍵是找到直線在平面上的射影,通常利用面面垂直的性質(zhì)定理或三垂線定理(及逆定理)來作射影。6.3二面角及其平面角從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。*二面角的平面角:在二面角α-l-β的棱l上任取一點O,以點O為垂足,在半平面α和β內(nèi)分別作垂直于棱l的射線OA和OB,則射線OA和OB構(gòu)成的∠AOB叫做二面角的平面角。*平面角是直角的二面角叫做直二面角。*范圍:[0°,180°]。*求法:定義法、垂面法、三垂線定理法、面積射影法(cosθ=S射影/S原)等。6.4空間距離(重點掌握點到平面的距離)*點到平面的距離:從點向平面引垂線,點到垂足之間的距離。*求法:直接法(作出垂線,求出長度)、等體積法(利用三棱錐體積公式,轉(zhuǎn)換底和高)、向量法。*直線到平面的距離(直線與平面平行):直線上任意一點到平面的距離。*平面到平面的距離(兩個平面平行):一個平面上任意一點到另一個平面的距離。*異面直線間的距離:兩條異面直線的公垂線夾在這兩條異面直線間的線段的長度。(高考要求不高,但需了解概念)七、空間向量在立體幾何中的應(yīng)用(理科重點)7.1空間直角坐標系的建立在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸。這時我們說建立了一個空間直角坐標系Oxyz,點O叫做原點,向量i,j,k叫做坐標向量。通過每兩個坐標軸的平面叫做坐標平面。7.2空間向量的坐標表示在空間直角坐標系中,對空間任一點A,存在唯一的有序?qū)崝?shù)組(x,y,z),使向量OA=xi+yj+zk,有序?qū)崝?shù)組(x,y,z)叫做點A在此空間直角坐標系中的坐標,記作A(x,y,z),其中x叫做點A的橫坐標,y叫做點A的縱坐標,z叫做點A的豎坐標。7.3用向量方法判定線面位置關(guān)系*線線平行:向量a與向量b(b≠0)共線?存在唯一實數(shù)λ,使a=λb。*線面平行:設(shè)平面α的法向量為n,直線a的方向向量為a,則a∥α?a·n=0且a不在α內(nèi)。*面面平行:設(shè)平面α的法向量為n1,平面β的法向量為n2,則α∥β?n1∥n2。*線線垂直:向量a與向量b垂直?a·b=0。*線面垂直:設(shè)平面α的法向量為n,直線a的方向向量為a,則a⊥α?a∥n。*面面垂直:設(shè)平面α的法向量為n1,平面β的法向量為n2,則α⊥β?n1·n2=0。7.4用向量方法求空間角*異面直線所成的角:設(shè)a,b分別是兩異面直線l1,l2的方向向量,則cosφ=|a·b|/(|a||b|),其中φ為異面直線所成的角(φ∈(0°,90°])。*直線與平面所成的角:設(shè)直線l的方向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 阿拉善2025年內(nèi)蒙古阿拉善盟融媒體中心引進攝像制作急需緊缺人才筆試歷年參考題庫附帶答案詳解
- 邯鄲河北邯鄲魏縣招聘警務(wù)輔助崗位120人筆試歷年參考題庫附帶答案詳解
- 蚌埠2025年安徽蚌埠固鎮(zhèn)縣職業(yè)技術(shù)學(xué)校招聘教師42人筆試歷年參考題庫附帶答案詳解
- 湘西2025年湖南湘西州龍山縣委政法委所屬事業(yè)單位選調(diào)筆試歷年參考題庫附帶答案詳解
- 河南2025年河南鄭州鐵路職業(yè)技術(shù)學(xué)院招聘17人筆試歷年參考題庫附帶答案詳解
- 杭州浙江杭州市體育局所屬事業(yè)單位杭州市水上運動中心招聘編外聘用人員筆試歷年參考題庫附帶答案詳解
- 廣西2025年廣西醫(yī)科大學(xué)第二附屬醫(yī)院醫(yī)技藥人才招聘筆試歷年參考題庫附帶答案詳解
- 宿州2025年安徽宿州靈璧縣村衛(wèi)生室(社區(qū)衛(wèi)生服務(wù)站)人員招聘68人筆試歷年參考題庫附帶答案詳解
- 寧德2025年福建福安市教育局招聘緊缺急需及高層次人才筆試歷年參考題庫附帶答案詳解
- 職業(yè)人群健康數(shù)據(jù)價值挖掘
- 2026年云南保山電力股份有限公司校園招聘(50人)考試參考試題及答案解析
- 2025-2026年人教版九年級下冊歷史期末考試卷及答案
- 煤礦綜采設(shè)備安裝施工方案
- 2026年云南保山電力股份有限公司校園招聘(50人)筆試備考題庫及答案解析
- 中央中國熱帶農(nóng)業(yè)科學(xué)院院屬單位2025年第一批招聘筆試歷年參考題庫附帶答案詳解
- 2025-2026學(xué)年人教版英語七年級下冊課程綱要
- 研發(fā)費用加計扣除審計服務(wù)協(xié)議
- 2025年教師轉(zhuǎn)崗考試職業(yè)能力測試題庫150道(含答案)
- 2025年二年級上冊語文期末專項復(fù)習(xí)-按課文內(nèi)容填空默寫表(含答案)
- 2026年遼寧經(jīng)濟職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2025年及未來5年市場數(shù)據(jù)中國軟包裝用復(fù)合膠行業(yè)市場調(diào)研分析及投資戰(zhàn)略咨詢報告
評論
0/150
提交評論