陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省延安一中2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數(shù)據(jù)如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據(jù)表中的數(shù)據(jù)用最小二乘法求得y關(guān)于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.52.當(dāng)我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面3.已知A(3,2),點F為拋物線的焦點,點P在拋物線上移動,為使取得最小值,則點P的坐標為()A.(0,0) B.(2,2)C. D.4.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.85.已知數(shù)列為等差數(shù)列,且成等比數(shù)列,則的前6項的和為A.15 B.C.6 D.36.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49527.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識競賽”活動,已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學(xué)生人數(shù)為()A.960 B.720C.640 D.3208.如果向量,,共面,則實數(shù)的值是()A. B.C. D.9.已知拋物線的焦點為F,,點是拋物線上的動點,則當(dāng)?shù)闹底钚r,=()A.1 B.2C. D.410.已知,則下列說法錯誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是11.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓12.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.10二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項和為,則_________________.14.已知圓錐的側(cè)面積為,若其過軸的截面為正三角形,則該圓錐的母線的長為___________.15.曲線在點處的切線方程為_________16.過拋物線的準線上任意一點做拋物線的切線,切點分別為,則A點到準線的距離與點到準線的距離之和的最小值為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求長.18.(12分)已知圓C的圓心為,一條直徑的兩個端點分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點,P(異于點M,N)為圓C上一點,求△PMN面積的最大值19.(12分)求下列不等式的解集:(1);(2)20.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設(shè)數(shù)列的通項,求證是等比數(shù)列,并求的前項和.21.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長為的正方形,點S在底面ABCD上的射影為底面ABCD的中心點O,點P在棱SD上,且△SAC的面積為1(1)若點P是SD的中點,求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點P使得二面角P?AC?D的余弦值為?若存在,求出點P的位置;若不存在,說明理由22.(10分)已知:,有,:方程表示經(jīng)過第二、三象限的拋物線,.(1)若是真命題,求實數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出樣本中心的橫坐標,代入回歸直線方程,求出樣本中心的縱坐標,然后求解即可【詳解】因為,代入回歸直線方程為,所以,,于是得,解得故選:B2、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.3、B【解析】設(shè)點P到準線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點到直線的距離最短求出【詳解】如圖所示:設(shè)點P到準線的距離為,準線方程為,所以,當(dāng)且僅當(dāng)點為與拋物線的交點時,取得最小值,此時點P的坐標為故選:B4、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關(guān)于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設(shè)等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.5、C【解析】利用成等比數(shù)列,得到方程2a1+5d=2,將其整體代入{an}前6項的和公式中即可求出結(jié)果【詳解】∵數(shù)列為等差數(shù)列,且成等比數(shù)列,∴,1,成等差數(shù)列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項的和為2a1+5d)=故選C【點睛】本題考查等差數(shù)列前n項和求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運用6、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D7、D【解析】由分層抽樣各層成比例計算即可【詳解】設(shè)高二年級學(xué)生人數(shù)為,則,解得故選:D8、B【解析】設(shè),由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.9、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點坐標,即可求解.【詳解】由題知,拋物線的準線方程為,,過P作垂直于準線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設(shè)所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關(guān)鍵點睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,解題的關(guān)鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學(xué)生的轉(zhuǎn)化思想與運算求解能力,屬于中檔題.10、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項即可判斷作答.【詳解】對于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯誤;對于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D11、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.12、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當(dāng)時,;而不適合上式,.故答案:.14、【解析】利用圓錐的結(jié)構(gòu)特征及側(cè)面積公式即得.【詳解】設(shè)圓錐的底面半徑為r,圓錐的母線為l,又圓錐過軸的截面為正三角形,圓錐的側(cè)面積為,∴,∴.故答案為:.15、【解析】求導(dǎo),求出切線斜率,用點斜式寫出直線方程,化簡即可.【詳解】,曲線在點處的切線方程為,即故答案為:16、8【解析】設(shè),,,,由可得,根據(jù)導(dǎo)數(shù)的幾何意義求得兩切線的方程,聯(lián)立求得點的坐標,再根到準線的距離轉(zhuǎn)化為到焦點的距離,三點共線時距離最小,進而求出最小值【詳解】解:設(shè),,,,由可得,所以,所以直線,的方程分別為:,,聯(lián)立,解得,即,,又有在準線上,所以,所以,設(shè)直線的方程為:,代入拋物線的方程可得:,可得,所以可得,即直線恒過點,即直線恒過焦點,即直的方程為:,代入拋物線的方程:,,所以,點到準線的距離與點到準線的距離之和,所以當(dāng)時,距離之和最小且為8,這時直線平行于軸故答案為:8三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.18、(1);(2).【解析】(1)設(shè)直徑兩端點分別為,,由中點公式求參數(shù)a、b,進而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長的幾何關(guān)系求,再由圓心到直線l的距離求P到直線l的距離的最大值,即可得△PMN面積的最大值【小問1詳解】設(shè)直徑兩端點分別為,,則,,所以,,則圓C半徑,所以C的方程為【小問2詳解】圓心C到直線l的距離,則,點P到直線l的距離的最大值為,所以,△PMN面積的最大值為19、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問1詳解】解:因為,所以,解得,所以不等式的解集是;【小問2詳解】因為,所以,所以,即,解得,所以不等式的解集是.20、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應(yīng)用求出的值,進一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.21、(1)證明見解析(2)存在,點P為棱SD靠近點D的三等分點【解析】(1)由的面積為1,得到,,由,點P為SD的中點,所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標系,假設(shè)在棱SD上存在點P,設(shè),求出平面PAC、平面ACD的一個法向量,由二面角的向量法可得答案.【小問1詳解】因為點S在底面ABCD上的射影為O,所以平面ABCD,因為四邊形ABCD是邊長為的正方形,所以,又因為的面積為1,所以,,所以,因為,點P為SD的中點,所以,同理可得,因為,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標系,如圖,則,,,,假設(shè)在棱SD上存在點P使二面角的余弦值為,設(shè),,,所以,,設(shè)平面PAC的一個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論