版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省蓬安二中2026屆高一數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則的解析式是()A. B.C. D.2.已知,那么下列結(jié)論正確的是()A. B.C. D.3.全集,集合,則()A. B.C. D.4.若,,則()A. B.C. D.5.奇函數(shù)f(x)在(-∞,0)上單調(diào)遞增,若f(-1)=0,則不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)6.已知函數(shù),則()A. B.C. D.7.冪函數(shù)圖象經(jīng)過點,則的值為()A. B.C. D.8.已知向量且,則x值為().A.6 B.-6C.7 D.-79.已知M,N都是實數(shù),則“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要10.函數(shù)是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.經(jīng)過,兩點的直線的傾斜角是__________.12.若偶函數(shù)在區(qū)間上單調(diào)遞增,且,,則不等式的解集是___________.13.新高考選課走班“3+1+2”模式指的是:語文、數(shù)學、外語三門學科為必考科目,物理、歷史兩門科目必選一門,化學、生物、思想政治、地理四門科目選兩門.已知在一次選課過程中,甲、乙兩同學選擇科目之間沒有影響,在物理和歷史兩門科目中,甲同學選擇歷史的概率為,乙同學選擇物理的概率為,那么在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理的概率為______14.若函數(shù),則______15.已知直線平行,則實數(shù)的值為____________16.已知函數(shù)(1)利用五點法畫函數(shù)在區(qū)間上的圖象(2)已知函數(shù),若函數(shù)的最小正周期為,求的值域和單調(diào)遞增區(qū)間;(3)若方程在上有根,求的取值范圍三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.國際上常用恩格爾系數(shù)r來衡量一個國家或地區(qū)的人民生活水平.根據(jù)恩格爾系數(shù)的大小,可將各個國家或地區(qū)的生活水平依次劃分為:貧困,溫飽,小康,富裕,最富裕等五個級別,其劃分標準如下表:級別貧困溫飽小康富裕最富裕標準r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地區(qū)每年底計算一次恩格爾系數(shù),已知該地區(qū)2000年底的恩格爾系數(shù)為60%.統(tǒng)計資料表明:該地區(qū)食物支出金額年平均增長4%,總支出金額年平均增長.根據(jù)上述材料,回答以下問題.(1)該地區(qū)在2010年底是否已經(jīng)達到小康水平,說明理由;(2)最快到哪一年底,該地區(qū)達到富裕水平?參考數(shù)據(jù):,,,18.設是實數(shù),(1)證明:f(x)是增函數(shù);(2)試確定的值,使f(x)為奇函數(shù)19.一家貨物公司計劃在距離車站不超過8千米的范圍內(nèi)征地建造倉庫,經(jīng)過市場調(diào)查了解到下列信息:征地費用(單位:萬元)與倉庫到車站的距離(單位:千米)的關(guān)系為.為了交通方便,倉庫與車站之間還要修一條道路,修路費用(單位:萬元)與倉庫到車站的距離(單位:千米)成正比.若倉庫到車站的距離為3千米時,修路費用為18萬元.設為征地與修路兩項費用之和.(1)求的解析式;(2)倉庫應建在離車站多遠處,可使總費用最小,并求最小值20.已知是冪函數(shù),是指數(shù)函數(shù),且滿足,(1)求函數(shù),的解析式;(2)若,,請判斷“是的什么條件?(“充分不必要條件”或“必要不充分條件”或“充要條件”或“既不充分也不必要條件”)21.已知.(1)求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由于,所以.2、B【解析】根據(jù)不等式的性質(zhì)可直接判斷出結(jié)果.【詳解】,,知A錯誤,B正確;當時,,C錯誤;當時,,D錯誤.故選:B.3、B【解析】先求出集合A,再根據(jù)補集定義求得答案.【詳解】由題意,,則.故選:B.4、C【解析】由題可得,從而可求出,即得.【詳解】∵所以,又因為,,所以,即,所以,又因為,所以,故選:C5、A【解析】考點:奇偶性與單調(diào)性的綜合分析:根據(jù)題目條件,畫出一個函數(shù)圖象,再觀察即得結(jié)果解:根據(jù)題意,可作出函數(shù)圖象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故選A6、B【解析】由分段函數(shù)解析式及指數(shù)運算求函數(shù)值即可.【詳解】由題設,,所以.故選:B.7、D【解析】設,由點冪函數(shù)上求出參數(shù)n,即可得函數(shù)解析式,進而求.【詳解】設,又在圖象上,則,可得,所以,則.故選:D8、B【解析】利用向量垂直的坐標表示可以求解.【詳解】因為,,所以,即;故選:B.【點睛】本題主要考查平面向量垂直的坐標表示,熟記公式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).9、B【解析】用定義法進行判斷.【詳解】充分性:取,滿足.但是無意義,所以充分性不滿足;必要性:當成立時,則有,所以.所以必要性滿足.故選:B10、A【解析】由題可得,根據(jù)正弦函數(shù)的性質(zhì)即得.【詳解】∵函數(shù),∴函數(shù)為最小正周期為的奇函數(shù).故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】經(jīng)過,兩點的直線的斜率是∴經(jīng)過,兩點的直線的傾斜角是故答案為12、【解析】根據(jù)題意,結(jié)合函數(shù)的性質(zhì),分析可得在區(qū)間上的性質(zhì),即可得答案.【詳解】因為偶函數(shù)在區(qū)間上單調(diào)遞增,且,,所以在區(qū)間上單調(diào)上單調(diào)遞減,且,所以的解集為.故答案為:13、【解析】至少1人選擇物理即為1人選擇物理或2人都選擇物理,由題分別得到甲選擇物理的概率與乙選擇歷史的概率,進而求解即可.【詳解】由題,設“在物理和歷史兩門科目中甲、乙兩同學至少有1人選擇物理”事件,則包括有1人選擇物理,或2人都選擇物理,因為甲同學選擇歷史的概率為,則甲同學選擇物理的概率為,因為乙同學選擇物理的概率為,則乙同學選擇歷史的概率為,故,故答案為:14、##0.5【解析】首先計算,從而得到,即可得到答案.【詳解】因為,所以.故答案為:15、【解析】對x,y的系數(shù)分類討論,利用兩條直線平行的充要條件即可判斷出【詳解】當m=﹣3時,兩條直線分別化為:2y=7,x+y=4,此時兩條直線不平行;當m=﹣5時,兩條直線分別化為:x﹣2y=10,x=4,此時兩條直線不平行;當m≠﹣3,﹣5時,兩條直線分別化為:y=x+,y=+,∵兩條直線平行,∴,≠,解得m=﹣7綜上可得:m=﹣7故答案為﹣7【點睛】本題考查了分類討論、兩條直線平行的充要條件,屬于基礎(chǔ)題16、(1)(2)的值域為,單調(diào)遞增區(qū)間為;(3)【解析】(1)取特殊點,列表,描點,連線,畫出函數(shù)圖象;(2)化簡得到的解析式,進而求出值域,整體法求解單調(diào)遞增區(qū)間;(3)整體法先得到,換元后得到在上有根,進而求出的取值范圍.【小問1詳解】作出表格如下:x0020-20在平面直角坐標系中標出以下五點,,,,,,用平滑的曲線連接起來,就是函數(shù)在區(qū)間上的圖象,如下圖:【小問2詳解】,其中,由題意得:,解得:,故,故的值域為,令,解得:,所以的單調(diào)遞增區(qū)間為:【小問3詳解】因為,所以,則,令,則,所以方程在上有根等價于在上有根,因為,所以,解得:,故的取值范圍是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)已經(jīng)達到,理由見解析(2)2022年【解析】(1)根據(jù)該地區(qū)食物支出金額年平均增長4%,總支出金額年平均增長的比例列式求解,判斷十年后是否達到即可.(2)假設經(jīng)過n年,該地區(qū)達到富裕水平,列式,利用指對數(shù)互化解不等式即可.【小問1詳解】該地區(qū)2000年底的恩格爾系數(shù)為%,則2010年底的思格爾系數(shù)為因為所以1,則所以所以該地區(qū)在2010年底已經(jīng)達到小康水平【小問2詳解】從2000年底算起,設經(jīng)過n年,該地區(qū)達到富裕水平則,故,即化為因為,則In,所以因為所以所以,最快到2022年底,該地區(qū)達到富裕水平18、(1)見解析(2)1【解析】(1)設x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,結(jié)合指數(shù)函數(shù)的單調(diào)性分析可得f(x1)﹣f(x2)<0,可得f(x)的單調(diào)性且與a的值無關(guān);(2)根據(jù)題意,假設f(x)是奇函數(shù),由奇函數(shù)的定義可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),對其變形,解可得a的值,即可得答案【詳解】(1)證明:設x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上為增函數(shù),則>0,>0,由x1<x2,可得﹣<0,則f(x1)﹣f(x2)<0,故f(x)為增函數(shù),與a的值無關(guān),即對于任意a,f(x)在R為增函數(shù);(2)若f(x)為奇函數(shù),且其定義域為R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),變形可得2a==2,解可得,a=1,即當a=1時,f(x)為奇函數(shù)【點睛】證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差:,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號:判斷的正負(要注意說理的充分性),必要時要討論;(4)下結(jié)論:根據(jù)定義得出其單調(diào)性.19、(1),;(2)當倉庫建在離車站5千米時,總費用最少,最小值為70萬元.【解析】(1)先設,依題意求參數(shù),即得的解析式;(2)先整理函數(shù),再利用基本不等式求最值,即得函數(shù)最小值及取最小值的條件.【詳解】解:(1)根據(jù)題意,設修路費用,,解得,.,;(2)=,當且僅當即時取等號.當倉庫建在離車站5千米時,總費用最少,最小值為70萬元.20、(1),(2)“”是“”的必要不充分條件【解析】(1)利用待定系數(shù)法求得.(2)通過求函數(shù)的值域求得,由此確定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建創(chuàng)智聯(lián)盟數(shù)字教育科技有限公司招聘2人參考考試試題及答案解析
- 珠寶公司績效獎金管理規(guī)定
- 樂至2022年事業(yè)編招聘考試模擬試題及答案解析34
- 職業(yè)規(guī)劃知識體系構(gòu)建
- 2026秋招:甘肅新業(yè)資產(chǎn)經(jīng)營公司面試題及答案
- 2026年立體貨架租賃改造合同
- 家政服務外包合同(2025年標準版)
- 廣告推廣協(xié)議(長尾詞2025年社交媒體)
- 倉庫新進員工培訓
- 保密協(xié)議(2025年教育咨詢)?
- DB12T 625-2016 生產(chǎn)經(jīng)營單位安全生產(chǎn)應急管理檔案要求
- 《二氧化碳陸地封存工程地質(zhì)條件適宜性評價及選址指南》
- 《降低輸液外滲率》課件
- 治療性低溫技術(shù)臨床應用進展
- 住院醫(yī)師規(guī)范化培訓內(nèi)容與標準(2022年版)-骨科培訓細則
- GB/T 16288-2024塑料制品的標志
- 2024-2025學年人教版小升初英語試卷及解答參考
- 質(zhì)量信得過班組匯報材料
- 醫(yī)學倫理學案例分析
- 金融科技對商業(yè)銀行業(yè)務的影響研究
- 寒假輔導班招生方案
評論
0/150
提交評論