版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1.3.2 函數(shù)的奇偶性,1.已知函數(shù)f(x)=x2,求f(0),f(1),f(1), f(2),f(2) 及f(x),并畫出它的圖象.,解:,f(2)=(2)2=4 f(2)=4,f(0)=0,f(1)=(1)2=1,f(1)=1,f(x)=(x)2=x2,思考:函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn)的縱坐標(biāo)有什么關(guān)系?,(x, y),(x, y),f(x),f(x),x,y,O,x,x,引入課題,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的
2、圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,思考:函數(shù)圖象
3、上橫坐標(biāo)互為相反數(shù)的點(diǎn)的縱坐標(biāo)有什么關(guān)系?,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,思考:函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn)的縱坐標(biāo)有什么關(guān)系?,f(2)= f(2)f(1)= f(1),2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,
4、思考:函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn)的縱坐標(biāo)有什么關(guān)系?,2.已知f(x)=x3,求f(0),f(1),f(1),f(2), f(2)及f(x),并畫出它的圖象.,f(2)=(2)3=8 f(2)=8,f(0)=0,f(1)=(1)3=1,f(1)=1,f(x)=(x)3=x3,解:,思考:函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn)的縱坐標(biāo)有什么關(guān)系?,偶函數(shù)定義: 如果對于f(x)定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)就叫偶函數(shù).,函數(shù)奇偶性的概念,偶函數(shù)定義: 如果對于f(x)定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)就叫偶函數(shù).,函數(shù)奇偶性的概念,奇函數(shù)定
5、義: 如果對于f(x)定義域內(nèi)的任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)就叫奇函數(shù).,對奇函數(shù)、偶函數(shù)定義的說明,函數(shù)具有奇偶性的前提是:定義域關(guān) 于原點(diǎn)對稱.,對奇函數(shù)、偶函數(shù)定義的說明,函數(shù)具有奇偶性的前提是:定義域關(guān) 于原點(diǎn)對稱.,對奇函數(shù)、偶函數(shù)定義的說明,2. 若f(x)為奇函數(shù),則f(x)=f(x)成立. 若f(x)為偶函數(shù), 則f(x)=f(x)成立.,對奇函數(shù)、偶函數(shù)定義的說明,函數(shù)具有奇偶性的前提是:定義域關(guān) 于原點(diǎn)對稱.,2. 若f(x)為奇函數(shù),則f(x)=f(x)成立. 若f(x)為偶函數(shù), 則f(x)=f(x)成立.,3. 如果一個(gè)函數(shù)f(x)是奇函數(shù)或偶
6、函數(shù), 那么我們就說函數(shù)f(x) 具有奇偶性.,對奇函數(shù)、偶函數(shù)定義的說明,函數(shù)具有奇偶性的前提是:定義域關(guān) 于原點(diǎn)對稱., f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:, f(x)=x2 _, f(x)=x3 _, f(x)=x1_, f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù), f(x)=x2 _, f(x)=x3 _, f(x)=x1_, f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x
7、3 _, f(x)=x1_, f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x3 _, f(x)=x1_, f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x3 _, f(x)=x1_,奇函數(shù), f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x3 _, f(x)=x1_,奇函數(shù),偶函
8、數(shù), f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x3 _, f(x)=x1_,奇函數(shù),奇函數(shù),偶函數(shù), f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x2 _, f(x)=x3 _,結(jié)論 一般的,對于形如f(x)=xn的函數(shù):, f(x)=x1_,奇函數(shù),奇函數(shù),偶函數(shù), f(x)=x4 _, f(x)=x _, f(x)=x5 _,練習(xí)1 說出下列函數(shù)的奇偶性:,偶函數(shù),奇函數(shù),奇函數(shù), f(x)=x
9、2 _, f(x)=x3 _,結(jié)論 一般的,對于形如f(x)=xn的函數(shù):,若n為偶數(shù),則它為偶函數(shù).若n為奇數(shù),則它為奇函數(shù)., f(x)=x1_,奇函數(shù),奇函數(shù),偶函數(shù),(1) f(x)=x3+2x (2) f(x)=2x4+3x2,例1 判斷下列函數(shù)的奇偶性:,=(x3+2x)=f(x),解:,f(x)=(x)3+2(x),=x32x,f(x)為奇函數(shù),定義域?yàn)镽,(1) f(x)=x3+2x (2) f(x)=2x4+3x2,例1 判斷下列函數(shù)的奇偶性:,=(x3+2x)=f(x),解:,f(x)=(x)3+2(x),=x32x,f(x)為奇函數(shù),f(x)=2(x)4+3(x)2,=2
10、x4+3x2=f(x),f(x)為偶函數(shù),定義域?yàn)镽,解:,定義域?yàn)镽,(1) f(x)=x3+2x (2) f(x)=2x4+3x2,例1 判斷下列函數(shù)的奇偶性:,小結(jié) 用定義判斷函數(shù)奇偶性的步驟:,(1) 先求定義域,看是否關(guān)于原點(diǎn)對稱; (2) 再判斷f(x)=f(x)或f(x)=f(x)是否 恒成立.,小結(jié) 用定義判斷函數(shù)奇偶性的步驟:,練習(xí)2 判斷下列函數(shù)的奇偶性:,練習(xí)2 判斷下列函數(shù)的奇偶性:,f(x)為奇函數(shù),定義域?yàn)閤|x0,解:,練習(xí)2 判斷下列函數(shù)的奇偶性:,f(x)為奇函數(shù),f(x)=(x)2+1 =x2+1,f(x)為偶函數(shù),定義域?yàn)閤|x0,定義域?yàn)镽,=f(x),
11、解:,解:,(3) f(x)=5 (4) f(x)=0,(3) f(x)=5 (4) f(x)=0,解:,f(x)的定義域?yàn)镽f(x)=f(x)=5f(x)為偶函數(shù),(3) f(x)=5 (4) f(x)=0,解:,f(x)的定義域?yàn)镽f(x)=f(x)=5f(x)為偶函數(shù),(3) f(x)=5 (4) f(x)=0,定義域?yàn)镽 f(x)=0=f(x)又 f(x)=0=f(x)f(x)為既奇又偶函數(shù),解:,f(x)的定義域?yàn)镽f(x)=f(x)=5f(x)為偶函數(shù),解:,(3) f(x)=5 (4) f(x)=0,定義域?yàn)镽 f(x)=0=f(x)又 f(x)=0=f(x)f(x)為既奇又偶函
12、數(shù),解:,f(x)的定義域?yàn)镽f(x)=f(x)=5f(x)為偶函數(shù),解:,(3) f(x)=5 (4) f(x)=0,定義域?yàn)镽 f(x)=0=f(x)又 f(x)=0=f(x)f(x)為既奇又偶函數(shù),結(jié)論 函數(shù)f(x)=0 (定義域關(guān)于原點(diǎn)對稱)為既奇又偶函數(shù).,解:,f(x)的定義域?yàn)镽f(x)=f(x)=5f(x)為偶函數(shù),解:,f(1)=0, f(1)=2f(1)f(1), f(1)f(1)f(x)為非奇非 偶函數(shù),解:,f(1)=0, f(1)=2f(1)f(1), f(1)f(1)f(x)為非奇非 偶函數(shù),定義域?yàn)?, +)定義域不關(guān)于 原點(diǎn)對稱f(x)為非奇非 偶函數(shù),解:,解
13、:,解:,定義域?yàn)镽,解:,定義域?yàn)镽,小結(jié) 根據(jù)奇偶性,函數(shù)可劃分為四類:,解:,定義域?yàn)镽,小結(jié) 根據(jù)奇偶性,函數(shù)可劃分為四類:,(1) 奇函數(shù) (2) 偶函數(shù)(3) 既奇又偶函數(shù)(4) 非奇非偶函數(shù),例2,(1) 求函數(shù)的定義域;(2) 化簡函數(shù)表達(dá)式;(3) 判斷函數(shù)的奇偶性.,例2,(1) 求函數(shù)的定義域;(2) 化簡函數(shù)表達(dá)式;(3) 判斷函數(shù)的奇偶性.,解:,奇偶函數(shù)圖象的性質(zhì),奇函數(shù)的圖象(如y=x3 ),奇偶函數(shù)圖象的性質(zhì),奇函數(shù)的圖象(如y=x3 ),奇偶函數(shù)圖象的性質(zhì),奇函數(shù)的圖象(如y=x3 ),奇偶函數(shù)圖象的性質(zhì),偶函數(shù)的圖象(如y=x2),奇函數(shù)的圖象(如y=x3
14、),奇偶函數(shù)圖象的性質(zhì),偶函數(shù)的圖象(如y=x2),奇函數(shù)的圖象(如y=x3 ),奇偶函數(shù)圖象的性質(zhì),偶函數(shù)的圖象(如y=x2),奇函數(shù)的圖象(如y=x3 ),奇偶函數(shù)圖象的性質(zhì),奇偶函數(shù)圖象的性質(zhì),1.奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于 原點(diǎn)對稱,那么這個(gè)函數(shù)為奇函數(shù).,2. 偶函數(shù)的圖象關(guān)于y軸對稱.,反過來,如果一個(gè)函數(shù)的圖象關(guān)于y軸對稱,那么這個(gè)函數(shù)為偶函數(shù).,奇偶函數(shù)圖象的性質(zhì),1.奇函數(shù)的圖象關(guān)于原點(diǎn)對稱. 反過來,如果一個(gè)函數(shù)的圖象關(guān)于 原點(diǎn)對稱,那么這個(gè)函數(shù)為奇函數(shù).,注 奇偶函數(shù)圖象的性質(zhì)可用于:, 判斷函數(shù)的奇偶性; 簡化函數(shù)圖象的畫法.,例3 已知函數(shù)y=f(x)是偶函數(shù),它在y軸右邊的圖象如圖,畫出y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京市平谷區(qū)政務(wù)服務(wù)中心綜合工作人員招聘參考題庫完美版
- 安徽阜陽市臨泉縣面向2026屆公費(fèi)師范畢業(yè)生招聘教師18人參考題庫含答案
- 2026重慶渝北龍興幼兒園招聘參考題庫附答案
- 遼寧科技學(xué)院2026年面向社會招聘高層次和急需緊缺人才46人備考題庫完美版
- 殘疾人工作培訓(xùn)課件
- 醫(yī)學(xué)統(tǒng)計(jì)與生物統(tǒng)計(jì)方法
- 2026年及未來5年市場數(shù)據(jù)中國醫(yī)用吊塔行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 醫(yī)療信息化在醫(yī)療服務(wù)安全性提升中的應(yīng)用
- 醫(yī)院感染管理科副主任消毒隔離技術(shù)
- 2026年消費(fèi)電子產(chǎn)業(yè)鏈金融項(xiàng)目營銷方案
- 腫瘤放射治療的新技術(shù)進(jìn)展
- 視頻會議系統(tǒng)施工質(zhì)量控制方案
- 2025年黨的二十屆四中全會精神宣講稿及公報(bào)解讀輔導(dǎo)報(bào)告
- 壓力管道安裝單位壓力管道質(zhì)量安全風(fēng)險(xiǎn)管控清單
- 停車場道閘施工方案范本
- 2025年實(shí)驗(yàn)室安全事故案例
- 衛(wèi)生院關(guān)于成立消除艾滋病、梅毒、乙肝母嬰傳播領(lǐng)導(dǎo)小組及職責(zé)分工的通知
- 鐵路更換夾板課件
- 卡西歐手表WVA-M600(5161)中文使用說明書
- 麻醉規(guī)培結(jié)業(yè)匯報(bào)
- 物流市場開發(fā)管理制度
評論
0/150
提交評論