已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
物理學論文-TheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityTheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityC.Y.LoAppliedandPureResearchInstitute17NewcastleDrive,Nashua,NH03060,USASeptember2001AbstractTheequivalenceprinciple,whichstatesthelocalequivalencebetweenaccelerationandgravity,requiresthatafreefallingobservermustresultinaco-movinglocalMinkowskispace.Ontheotherhand,covarianceprincipleassumesanyGaussiansystemtobevalidasaspace-timecoordinatesystem.Giventhemathematicalexistenceoftheco-movinglocalMinkowskispacealongatime-likegeodesicinaLorentzmanifold,acrucialquestionforasatisfactionoftheequivalenceprincipleiswhetherthegeodesicrepresentsaphysicalfreefall.Forinstance,ageodesicofanon-constantmetricisunphysicaliftheaccelerationonarestingobserverdoesnotexist.ThisanalysisismodeledafterEinsteinillustrationoftheequivalenceprinciplewiththecalculationoflightbending.Tojustifyhiscalculationrigorously,itisnecessarytoderivetheMaxwell-NewtonApproximationwithphysicalprinciplesthatleadtogeneralrelativity.Itisshown,asexpected,thattheGalileantransformationisincompatiblewiththeequivalenceprinciple.Thus,generalmathematicalcovariancemustberestrictedbyphysicalrequirements.Moreover,itisshownthroughanexamplethataLorentzmanifoldmaynotnecessarilybediffeomorphictoaphysicalspace-time.Alsoobservationsupportsthataspacetimecoordinatesystemhasmeaninginphysics.Ontheotherhand,Pauliversionleadstotheincorrectspeculationthatingeneralrelativityspace-timecoordinateshavenophysicalmeaning1.Introduction.Currently,amajorproblemingeneralrelativityisthatanyRiemanniangeometrywiththepropermetricsignaturewouldbeacceptedasavalidsolutionofEinsteinequationof1915,andmanyunphysicalsolutionswereaccepted1.Thisis,inpart,duetothefactthatthenatureofthesourcetermhasbeenobscuresincethebeginning2,3.Moreover,themathematicalexistenceofasolutionisoftennotaccompaniedwithunderstandingintermsofphysics1,4,5.Consequently,theadequacyofasourceterm,foragivenphysicalsituation,isoftennotclear6-9.Pauli10consideredthathetheoryofrelativitytobeanexampleshowinghowafundamentalscientificdiscovery,sometimesevenagainsttheresistanceofitscreator,givesbirthtofurtherfruitfuldevelopments,followingitsownautonomouscourse.Thus,inspiteofobservationalconfirmationsofEinsteinpredictions,oneshouldexaminewhethertheoreticalself-consistencyissatisfied.Tothisend,onemayfirstexaminetheconsistencyamongphysicalrincipleswhichleadtogeneralrelativity.Thefoundationofgeneralrelativityconsistsofa)thecovarianceprinciple,b)theequivalenceprinciple,andc)thefieldequationwhosesourcetermissubjectedtomodification3,7,8.Einsteinequivalenceprincipleisthemostcrucialforgeneralrelativity10-13.Inthispaper,theconsistencybetweentheequivalenceprincipleandthecovarianceprinciplewillbeexaminedtheoretically,inparticularthroughexamples.Moreover,theconsistencybetweentheequivalenceprincipleandEinsteinfieldequationof1915isalsodiscussed.Theprincipleofcovariance2statesthathegenerallawsofnaturearetobeexpressedbyequationswhichholdgoodforallsystemsofcoordinates,thatis,arecovariantwithrespecttoanysubstitutionswhatever(generallycovariant).Thecovarianceprinciplecanbeconsideredasconsistingoftwofeatures:1)themathematicalformulationintermsofRiemanniangeometryand2)thegeneralvalidityofanyGaussiancoordinatesystemasaspace-timecoordinatesysteminphysics.Feature1)waseloquentlyestablishedbyEinstein,butfeature2)remainsanunverifiedconjecture.IndisagreementwithEinstein2,Eddington11pointedoutthatpaceisnotalotofpointsclosetogether;itisalotofdistancesinterlocked.EinsteinacceptedEddingtoncriticismandnolongeradvocatedtheinvalidargumentsinhisbook,heMeaningofRelativityof1921.EinsteinalsopraisedEddingtonbookof1923tobethefinestpresentationofthesubjecteverwrittenMoreover,incontrasttothebeliefofsometheorists14,15,ithasneverbeenestablishedthattheequivalenceofallframesofreferencerequirestheequivalenceofallcoordinatesystems9.Ontheotherhand,ithasbeenpointedoutthat,becauseoftheequivalenceprinciple,themathematicalcovariancemustberestricted8,9,16.Moreover,Kretschmann17pointedoutthatthepostulateofgeneralcovariancedoesnotmakeanyassertionsaboutthephysicalcontentofthephysicallaws,butonlyabouttheirmathematicalformulation,andEinsteinentirelyconcurredwithhisview.Pauli10pointedoutfurther,hegenerallycovariantformulationofthephysicallawsacquiresaphysicalcontentonlythroughtheprincipleofequivalence.Nevertheless,Einstein2arguedthat.thereisnoimmediatereasonforpreferringcertainsystemsofcoordinatestoothers,thatistosay,wearriveattherequirementofgeneralco-variance.Thus,Einsteincovarianceprincipleisonlyaninterimconjecture.Apparently,hecouldmeanonlytoamathematicalcoordinatesystemforcalculationsincehisequivalenceprinciple,amongothers,isanimmediatereasonforpreferringcertainsystemsofcoordinatesinphysics(壯5&6).Notethatamathematicalgeneralcovariancerequires,asHawkingdeclared18,theindistinguishabilitybetweenthetime-coordinateandaspace-coordinate.Ontheotherhand,theequivalenceprincipleisrelatedtotheMinkowskispace,whichrequiresadistinctionbetweenthetime-coordinateandaspace-coordinate.Hence,themathematicalgeneralcovarianceisinherentlyinconsistentwiththeequivalenceprinciple.Althoughtheequivalenceprincipledoesnotdeterminethespace-timecoordinates,itdoesrejectphysicallyunrealizablecoordinatesystems9.WhereasinspecialrelativitytheMinkowskimetriclimitsthecoordinatetransformations,amonginertialframesofreference,totheLorentz-Poincartransformations;ingeneralrelativitytheequivalenceprinciplelimitsthephysicalcoordinatetransformationstobeamongvalidspace-timecoordinatesystems,whichareinprinciplephysicallyrealizable.Thus,theroleoftheMinkowskimetricisextendedbytheequivalenceprincipleeventowheregravityispresent.Mathematically,however,theequivalenceprinciplecanbeincompatiblewithasolutionofEinsteinequation,evenifitisaLorentzmanifold(whosespace-timemetrichasthesamesignatureasthatoftheMinkowskispace).IthasbeenproventhatcoordinaterelativisticcausalitycanbeviolatedforsomeLorentzmanifolds9,16.Unfortunately,duetoinadequatephysicalunderstanding,somerelativists19-23believethatapropermetricsignaturewouldimplyasatisfactionoftheequivalenceprinciple.Themisconceptionthat,inaLorentzmanifold,areefallwouldautomaticallyresultinalocalMinkowskispace20,23,hasdeep-rootedphysicalmisunderstandingsfrombelievinginthegeneralmathematicalcovarianceinphysics.Althoughtheequivalenceprincipleforaphysicalspace-time1)isclearlystated,theconditionsforitssatisfactioninaLorentzmanifoldhavebeenmisleadinglyoversimplified.Thus,itisnecessarytoclarifyfirst,intermsofphysics,themeaningoftheequivalenceprincipleanditssatisfaction(2&3).Thecrucialconditionforasatisfactionoftheequivalenceprincipleisthatthegeodesicrepresentsaphysicalfreefall.ThemathematicalexistenceoflocalMinkowskispacesmeansonlymathematicalcompatibilityofthetheoryofgeneralrelativitytoRiemanniangeometry.Then,itbecomespossibletodemonstratemeaningfullythroughdetailedexamplesthatdiffeomorphiccoordinatesystemsmaynotbeequivalentinphysics(5&6).Moreover,toavoidprejudiceduetotheoreticalpreferences,thesedemonstrationsarebasedontheoreticalinconsistency.Tothisend,Einsteinillustrationoftheequivalenceprincipleinhiscalculationofthelightbendingisusedasamodelforthisanalysis.However,inhiscalculation,therearerelatedtheoreticalproblemsthatmustbeaddressed.First,thenotionofgaugeusedinhiscalculationisactuallynotgenerallyvalid9aswillbeshowninthispaper.Also,itisknownthatvalidityofthe1915Einsteinequationisquestionable7,8,24-26.Foracompletetheoreticalanalysis,theseissuesshould,ofcourse,beaddressedthoroughly.Nevertheless,forthevalidityofEinsteincalculationonthelightbending2,itissufficienttojustifythelinearfieldequationasavalidapproximation.Forthispurpose,theMaxwell-NewtonApproximation(i.e.,thelinearfieldequation)isderiveddirectlyfromthephysicalprinciplesthatleadtogeneralrelativity(4).Moreover,thereareintrinsicallyunphysicalLorentzmanifoldsnoneofwhichisdiffeomorphic21toaphysicalspace-time(7).Thus,toacceptaLorentzmanifoldasvalidinphysics,itisnecessarytoverifytheequivalenceprinciplewithaspace-timecoordinatesystemforphysicalinterpretations.Then,forthepurposeofcalculationonly,anydiffeomorphismcanbeusedtoobtainnewcoordinates.Itisonlyinthissensethatacoordinatesystemforaphysicalspace-timecanbearbitrary.Inthispaper,therequirementofageneralcovarianceamongallconceivablemathematicalcoordinatesystems2willbefurtherconfirmedtobeanover-extendeddemand9.(NotethatEddington11didnotacceptthegaugerelatedtogeneralmathematicalcovariance.)Analysisshowsthatasatisfactionoftheequivalenceprinciplerestrictedcovariance(壯3-5).Afterthisnecessaryrectification,somecurrentlyacceptedwell-knownLorentzmanifoldswouldbeexposedasunphysical(7).But,generalrelativityasaphysicaltheoryisunaffected9.Itishopedthatthisclarificationwouldhelpurtherfruitfuldevelopments,followingitsownautonomouscourse10.2.EinsteinEquivalencePrinciple,FreeFall,andPhysicalSpace-TimeCoordinatesInitiallybasedontheobservationthatthe(passive)gravitationalmassandinertialmassareequivalent,Einsteinproposedtheequivalenceofuniformaccelerationandgravity.In1916,thisproposalisextendedtothelocalequivalenceofaccelerationandgravity2becausegravityisingeneralnotuniform.Thus,ifgravityisrepresentedbythespace-timemetric,thegeodesicisthemotionofaparticleundertheinfluenceofgravity.Then,foranobserverinafreefall,thelocalmetricislocallyconstant.Tobeconsistentwithspecialrelativity,suchalocalmetricisrequiredtobelocallyaMinkowskispace2.Thus,acentralproblemingeneralrelativityiswhetherthegeodesicrepresentsaphysicalfreefall.However,validityofthisglobalpropertyisrealizedlocallythroughasatisfactionoftheequivalenceprinciple.Moreover,Eddington11observedthatspecialrelativityshouldapplyonlytophenomenaunrelatedtothesecondorderderivativesofthemetric.Thus,Eins
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標志物在藥物臨床試驗中的醫(yī)學研究意義
- 生物制劑臨床試驗中生物樣本庫管理規(guī)范
- 深度解析(2026)《GBT 20529.2-2010企業(yè)信息分類編碼導則 第2部分:分類編碼體系》
- 餐飲業(yè)門店經理面試問題集
- 生活質量干預方案
- 深度解析(2026)《GBT 19475.2-2004縮微攝影技術 開窗卡掃描儀制作影像質量的測量方法 第2部分質量要求和控制 》
- 工程項目經理中級職位的答案解析
- 瓣膜性房顫患者卒中預防
- 深度解析(2026)《GBT 19352.4-2003熱噴涂 熱噴涂結構的質量要求 第4部分基本的質量要求》
- 年產xxx復式水表項目可行性分析報告
- 人教版(PEP)英語六年級上冊 Unit4 Part A Lets learn 教案
- 基于無人機的精準投遞技術研究
- 人教版五年級《語文上冊》期末試卷(全面)
- 項目八 任務二:機械手液壓系統(tǒng)分析
- (完整文本版)日文履歷書(文本テンプレート)
- 國家開放大學《管理英語4》邊學邊練Unit 5-8(答案全)
- 時尚·魅力-大學生魅商修煉手冊智慧樹知到期末考試答案章節(jié)答案2024年南昌大學
- 《金牌店長培訓》課件
- 宜昌市點軍區(qū)2023-2024學年七年級上學期期末數學綜合測試卷(含答案)
- 井下單項、零星工程管理制度模版
- 道路危險貨物運輸企業(yè)安全生產標準化評價實施細則
評論
0/150
提交評論