全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GliomaTissueModelingbyCombingtheInformationofMRIandinvivoMultivoxelMRSWeibeiDOU,AoyanDONG,PingCHITsinghuaNationalLaboratoryforInformationScienceandTechnologyDept.ofElectronicEngineering,TsinghuaUniversity,Beijing,100084,P.R.Chinae-mail:ShaowuLINeuroimagingCenterofTiantanHospitalCapitalMedicalUniversity,Beijing,P.R.ChinaJean-MarcCONSTANSUnitdIRM,EA3916,CHRUCaen,FranceAbstractThispaperpresentsagliomamodelizationmethodandaregression-likemodeltocreateagraduallygliomaimage(GlioIm).Multimodalsignal,imagesofmagneticresonanceimaging(MRI)andinvivomultivoxelMRspectroscopy(MRS)arecombinedbytheregression-likemodelwithspatialresolutionregistration.ThismodelingmethodconsistsoffeaturemodelsofgliomasuchasthesignalintensityofMRimageandthemetabolitechangesofMRS,thecorrelationmodelnotedasmetabolitesratio(MetaR)andthecombinedregression-likemodel.TheestimatedGlioImincludesbothbrainstructureandgliomagradeinformation.Anonlinearmodelisproposedandvalidatedinthispaper.ThetestingdataisacquiredbySiemensTrioTim(3T)andSyngoMRB15atBeijingTiantanhospitalofChina.TheMRSofthreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,andthechemicalshiftimaging(CSI)referenceT2imageswereconsideredinourvalidationexperiment.TheresultingGlioImsarecomparedwithgroundtruthprovidedbyneuroradiologistsofTiantanandverifiedwiththeirpathologyreport.Theyreportthatourmethodandmodelareveryefficient.Keywords-MRSpectroscopy;brain;glioma;chemicalshiftimaging;MRI;image;modeling;combinationI.INTRODUCTIONTodiagnosebraintissueabnormalities,liketumor,itsnecessarytousemultispectralmagneticresonanceimages(MRIs),suchasT1-weight,T2-weight,Gadolinium,FLAIRetcinordertofindsomeoftumorspropertiessuchassize,position,sort,andrelationshipwithothertissues,etc.Butthetumortypeandgradeareusuallydiagnosedfromhistopathologicalexaminationofasurgicalspecimen.However,Hydrogen1(1H)magneticresonancespectroscopy(MRS)isanon-invasiveMRtechniquethatprovidesbiochemicalinformationofmetabolites.Themajorbiochemicalcharacteristicscannoninvasivelyprovideusefulinformationonbraintumortypeandgrade1.Inmanystudies,invivo1H-MRShasbeenpresentedfordeterminingthetypeandgradeoftumors123.SinceinvivoMRSmeasurementsandanalysisaredependentontheacquisitiontechnicalthatcompromisethespatialresolutionandaccuracyforresultingmetabolitevalues4,metabolicchangeswithdiseaseisfrequentlysubtleanddiffuse.Furthermore,bychemical-shiftimaging(CSI)technique,themetaboliteimagesso-calledMRspectroscopicimaging(MRSI)canbecreatedbymultivoxelMRSinformation,butitisnotvisuallyinterpretableinthesenseofastructuralMRI4.Sothat,forthetumortissueclassification,itisimportantthatMRSIiscombinedwithMRItoestimatethevariationofmetabolitesandtoyieldmuchinformationregardingtissue.Duringmorethanadecade,automaticbraintumorclassificationbyMRShasbeendeveloped5,butthemorecleardefinitionofbraintumortypeandgrademaybeobtainedbycombinationofMRSIandMRI5.AtechniquetodifferentiateglioblastomafrommetastasislesionsbyusingMRIandMRSdatahasbeenpublishedin6.Wangetal.describedaclassificationofbraintumorsbyusingfeaturesselectionandfuzzyconnectednessin7,thesefeaturesareextractedfromMRIandMRSdata.TherearetwodifficultiesforcombingMRSIdataandMRIdata:firstly,thesedataarefromdifferentmodalities,sotheyarenotinthesamespatialresolution,verylowspatialresolutioninvoxelforMRSIandhighspatialresolutioninpixelforMRI.Secondly,oneMRimagecorrespondstothedistributionofalltissues,ortissuestructure.ButoneMRSimageisaprojectionimagewhichcorrespondstoonemetaboliteorratiobetweenseveralmetabolites.SothedifferentmetabolitevaluesmakevariationMRSimages,justlikethemappingofmetabolitedistributionsbyMRSIpresentedin8.ThequestionforapplicationishowtocombinetheseMRSimagesandMRimagestogiveanautomatictissueclassificationresult.ThekeypointofthecombinationishowtomodelthemetabolitedistributionfromMRS,whichcorrespondstoinformationfromMRimages.Forautomaticdescriptionofbraintumortypeandgrade,weproposeamodelizationmethodofgliomatissuesbycombingtheinformation,fromMRimagesandMulitivoxelMRSdata.ItcancreateaMRS-weightedMRimageautomaticallywhichkeepsthehighspatialresolutionlikeMRimageandthegreylevelscorrespondtothedeteriorationofbraintissues.ThesecondpartofthispaperintroducesthegliomatissuefeaturesbothinMRSvaluesandinMRimages.Thecombinationmodelingofthetwotypesofinformationispresentedinthethirdsectionanditsvalidationisshowninthefourthsection.Theconclusionaboutourresearchisgivenattheendofthispaper.ThisworkisfundedbyTsinghuaNationalLaboratoryforInformationScienceandTechnology(TNList)Cross-disciplineFoundation978-1-4244-4713-8/10/$25.002010IEEEII.FEATURESMODELOFGLIOMATISSUEFollowingtheresearchofdiagnosingbraintumorbyMRimagesandMRS,wecansummarizetwotypesofcharacteristicsofglioma,oneisthesignalintensityofT1-weightandT2-weightimages,andtheotheroneisthechemical-shiftvaluesofmetabolitespresentedbyMRSdata.A.SignalIntensityCharacteristicsofMRimagesWehaveproposedsomefuzzymodelingmethodsofdifferenttumorouscerebraltissuesonMRimagesbasedonfusionoftissuefeaturesin91011.TableIdescribesthecharacteristicsofbraintissuesbycreatingagradualityofsignalintensityasafunctionofdifferenttissuesandsequencesofMRI10,whereCSFistheabbreviationofcerebralspinalfluid,GMtheabbreviationofgraymatter,andWMwhitematter.IntableI,the“Seqs”isshortforSequencesofMRI”.Thesymbol“+”presentsahyper-signal;itmeansthatthesignalintensityisveryhighandtheimageisverybright.Thesymbol“-”presentsahypo-signal,theintensityisverylowandtheimageisverydark.Thesymbol“-+”meansthatthesignalintensityishigherthanhypo-signal,and“+-”meansthatitisdarkerthanhyper-signal.“-”meansthatthesignalintensityislowerthanthehypo-signal,and“+”meansthatitisbrighterthanthehyper-signal.AnexampleofT1-weightedimagenotedasT1,andT2-weightedimagenotedasT2areshowninFig.1TABLEI.SIGNALINTENSITYCHARACTERISTICSOFBRAINTISSUESONMRIMAGESSequencesGradualityofsignalintensityCSFGMWMGliomaEdemaNecrosisT1-+-+-T2+-+-(a)(b)Figure1.OriginalMRIimages(a)T1image,(b)T2imageB.MetaboliteChangesFeaturesofMRSTABLEII.SCALARDESCRIPTIONOFMETABOLITEVALUESMetabolitelevelabsentverylowlittlelowlowmediumlittlehighhighveryhighabbreviationAVLLLLMLHHVHThereareonlyseveralmetaboliteswhichcorrespondtogliomaamongalargenumberofmetabolitesofhumanbody.N-acetyl-asparate(NAA),creatine(Cr),choline(Cho),myo-inositol(mI),lactate(Lac)andfreelipids(Lip).ThevariationofthesemetabolitescanbeorderedinascalarformasshowninTableII,wherethescalarorderis:absent,verylow,littlelow,low,medium,littlehigh,high,veryhigh,whichcorrespondtometabolitevaluesfrom0tomaximum.ThemetabolicchangeswithbraintissuesareshowninTableIII.Itisconcludedfrom121314.TABLEIII.METABOLITECHANGESFEATURESOFBRAINTISSUESONMRSMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisNAAVLVHHL/VLMAChoAMLHH/VHLHACrLHHM/LLLAmILMLHHLH/MALipAVLLHLVHLacLHVLAH/LHLHHIII.MODELIZATIONBYCOMBININGMRSWITHMRITheaimofthismodelizationstudyistocreateagradually?gliomaimage,notedasGlioIm,whichincludesbrainstructureandgliomagradeinformation.IfthegliomagradeinformationisconsideredasacorrelationfunctionbetweenMRsignalandpathologicalchanges.Weproposearegression-likemodeltoestimatetheGlioImfromMRimagesnotedasMRImandmetabolitechanges.A.CorrelationmodelOneofthecorrelationfunctionsismetabolitechangescorrespondingtoglioma.BycombiningtheinformationinTableIandTableIII,wecanrebuildaconclusionTableIVaboutgliomacharacteristicswithrelativequantizationofmetabolitesofTableIII.Therelativequantizationisratiosbetweenmetabolitevalues,suchastheratioofChoandNAAnotedasCho/NAAinTableIV,itiscalledmetabolitesratio(MetaR),andTableIViscalledcorrelationmodelinthispaper.TABLEIV.METABOLITESRATIOCHARACTERISTICOFBRAINTISSUESMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisCho/NAAAVLLVHHACho/CrALLHHAmI/CrMLMHHALip/CrAVLVLHMVHLac/CrLHVLAHHHTheMetaRcharacteristicsofglioma,edemaandnecrosisareenhancedandthenormaltissuesarereduced.TheyassortwithsignalintensitycharacteristicsofT2-weightedimagedescribedinTableI.B.Regression-likemodelwithspatialresolutionregistrationNormaly,MetaRisafunctionofvoxeldecidedbyCSIsliceshowninFig.2.Sothat,itisatwodimensionalfunctionnotedasMetaR(i,v),where“i”isindexofmetaboliteand“v”istheindexofvoxelcorrespondedwithCSIslice.Asthesamereason,GlioImcanbecreatedasathreedimensionalfunction,notedasGlioIm(v,p,g),where“p”isindexofpixelcorrespondedwithMRIm,and“g”isthegreylevelofselectedMRimageandcorrespondsto“p”.Infact,MRImisatwodimensionalfunctionnotedasMRIm(p,g),whereandgG,1,2,.TTPDFLAIRGadoDiffusionPerfusion=GConsidertwovariables,MRImandGlioIm,MRImisacertainimagelikeT2,GlioImisanestimatedimage.ThecorrelationmodelMetaRcanbeconsideredasonerelationshipbetweenthem.Sotheregression-likemodelforestimatingGlioImfromMRImcanbecreatedasequation(1).Im(,)(,)Im(,)GliovpgMetaRivMRpg=(1)Where“”notesanecessaryoperator,and“p”correspondsto“v”.Ifalinearregressiveisnecessary,equation(1)canberewrittenas(2):Im(,)(,)Im(,)(,)GliovpgMetaRivMRpgMetaRjv=+(2)where“i”and“j”indicatedifferentmetabolites.C.NonlinearRegression-likemodelToavoidmosaiceffects,weproposeanonlinearregression-likemodelwithspatialresolutionregistrationin(3).Im(,)Im(,)exp(,)(.)MRpgGliovpgMetaRivMetaRjvT=+(3)where“T”isatimeconstantcorrespondingtoMRIm(p,g).AccordingtothecorrelationmodelofTableIV,theLip/CrandLac/Crarespecificfeatureswhicharedependentonthetumorgrade.Sothat,inthemodelofequation(2),wehave:,/,/,/,/ijMetaRChoNaaChoCrmICrLipCrLacCr=IJIJIJ,BecausetheJofMetaRisthegrademarker,ittakesaninterceptiveroletomakeadifferentgreylevelfromothervoxelsandindicatesavariablegrade.IV.VALIDATIONANDRESULTA.MaterielThreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,wereconsideredinourvalidationexperiment.ThetestingdataareadatapairconsistedofCSIrawdataandtheirreferenceimages.ThesedatawereacquiredwithSTEAMsequenceatBeijingTiantanhospital(China),bySiemensMRTrioTim(3T)andsyngoMRB15.TheMRSrawdataaremeasuredbycsi_st/90protocolwithTR3000/TE72/TM6.T2-weightedimagesaremeasuredbyt2_tse_traprotocolwithTR4500/TE80.TwoexamplesofthesedataareshowninFig.2.Thenonlinearregression-likemodel(3)isvalidatedbyourtestingexperimentation.MRImof(3)isT2with0.570.57mm2pixelsizeand5mmslicethickness.ThetimeconstantTin(3)isindicatedbyhistogrampeakofCSIreferenceimagesinT2.ThemetabolitevaluesarecalculatedbyTHU-MRSv0.5developedbyourresearchgroupandpublishedin15.TheCSIslicesnotethattheMRSvoxelsizeis141420mm3.(a)(b)Figure2.ExampleofCSIslice(down-left)withitsreferenceimagesandmetabolitesvaluescorrespondedwithvoxelsize141420mm3.(a)fromanastrocytomapatient,masculine30yearsold.(b)fromagliomapatient,feminie48yearsold.B.ResultThevalidationresultscorrespondedtoVOIareshowninFig.3(f)andFig.4(f).Thehighersignalorbrighterpixelin(f)marksgreaterpossibilityofgliomaorhighertumorgrade.InFig.3and4,(a)aretheoriginalT2-weightedimageswiththesignofVOI,(b)arethehandlabelresultsas“Groundtruth”fromneuroradiologistsofTiantan,(c)areonepartof(a)inVOI,(d)aretheresultsofexponentialcomponentofequation(3)whichpresentsthecombinedinformationofT2andCho/Naa,(e)aretheresultsofsuperpositionofT2and(Lip+Lc)/Cr.(a)T2+VOI(b)Groundtruth(c)OriginalT2inVOI(d)MetaR(Cho/Naa)(e)MetaR(Lac+Lip)/Cr)(f)ResultingGlioImFigure3.ResultingGlioIm(f)ofthepatientaffectedbyastrocytomaC.DiscussionThebrighterpixelinFig.3(d)or(f)denotesnotonlyhigherCho/NaabutalsobrighterT2.BecauseMetaRvaluesinTableIVareconsistentwiththeintensityofT2.Soitmayindicategliomaandhighergraderegion.ThedarkerpixelspresentlowerCho/NaaanddarkerT2,mayindicatenormaltissues.Thentherearesomebrighterpixelsin(d)and(f),theyarenotconnectedwithgliomaregion,theyareCSFperhaps,becauseCSFisbrighterinT2.WecanremovethemsimplybyusingregisteredFLAIRimage.TheregisteredGadoliniumimagealsocanbeusedtoindicateenhancedpixelsorregion.(a)T2+VOI(b)Groundtruth(c)originalT2inVOI(d)MetaR(Cho/Naa)(e)MetaR(Lac+Lip)/Cr)(f)ResultingGlioImFigure4.ResultingGlioIm(f)ofthepatientaffectedbygliomaBecauseamongthe5metaboliteratiosinTableIV,onlythreepresentevidentchanges,likeCho/Naa,Lip/CrandLac/Cr.Theothertworatiosarenotutilizedinourexperiment.ItispossibletouseotherMRIsequencessuchasT1,butitisnecessaryeithertotransformgreylevelsofimageortoinversethevalueofMetaR.Asmentionedin16,animageresultedfromfusionofgliomafeaturesextractedfrommultimodalitysignal,aspresentedin9,canalsobeusedasMRIminthisgliomamodel.V.CONCLUSIONAdvantagesofMRItechniqueprovidemorepossibilitywithmulti-sequencesandmultimodalitiessignaltorealizethetumordiagnosis,treatmentandprognosis.Butitisheavyworkforprocessingallsignalstodoafinaldecision.SoAutomaticquantificationandcombinationanalysisisveryimportantandthemodelingoftumorfeaturesisthekeypointforperformingit.Wehaveproposedaframeworkoffuzzyfeaturesfusionsystemin16andpublishedsomeresearchresultsaboutfusingthetumorfeaturesextractedfromT1,T2andprotondensityimages9.Inthispaper,wepresenttheprimarystudyaboutthetumorfeaturescombinationofMRSandMRimages.Theproposedmodelingmethodandnonlinearregression-likemodelarevalidforseparatingthebraintissuesespeciallyglioma.Itwillbeusedfortumortissuesclassification,segmentation,tumortypeandgradedecision,etc.Thereisstillmuchworktoimprovethismodelandtointegrateitwiththefusionsysteminthefuture.REFERENCES1HoweFA,BartonSJ,CudlipSA,StubbsM,SaundersDE,MurphyM,WilkinsP,OpstadKS,DoyleVL,McLeanMA,BellBA,GriffithsJR.“Metabolicprofilesofhumanbraintumorsusingquantitativeinvivo1Hmagneticresonancespectroscopy”.MagnResonMed.2003Feb;49(2):223-32.2PreulMC,CaramanosZ,CollinsDL,VillemureJ-G,LeblancR,OlivierA,PokrupaR,ArnoldD.Accurate,non-invasivediagnosisofhumanbraintumorsbyusingprotonmagneticresonancespectroscopy.NatMed1996;2:323325.3MajsC,AguileraC,CosM,CaminsA,CandiotaAP,Delgado-GoiT,SamitierA,CastaerS,SnchezJJ,MatoD,AcebesJJ,ArsC.“Invivoprotonmagneticresonancespectroscopyofintraventriculartumoursofthebrain”EurRadiol.2009Aug;19(8):2049-59.4A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studholme,K.Arheart,C.Bloomer,“MappingofbrainmetabolitedistributionsbyvolumetricprotonMRspectroscopicimaging(MRSI)”MagneticResonnanceinMedicin61:548-559(2009).5Garcia-GomezJ.,LutsJ.,Julia-SapeM.,KrooshofP.,TortajadaS.,VicenteJ.,MelssenW.,Fuster-GarciaE.,OlierI.,PostmaG.,MonleonD.,Moreno-TorresA.,PujolJ.,CandiotaA.-P.,Martinez-BisbalM.C.,SuykensJ.A.K.,BuydensL.,CeldaB.,VanHuffelS.,ArusC.,RoblesM.,Multiproject-multicenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy,MagneticResonanceMaterialsinPhysics,BiologyandMedicine,vol.22,Feb.2009,pp.5-18.6LutsJ.,LaudadioT.,Martinez-BisbalM.C.,VanCauterS.,MollaE.,PiquerJ.,SuykensJ.A.K.,HimmelreichU.,CeldaB.,VanHuffelS.,DifferentiationbetweenbrainmetastasesandglioblastomamultiformebasedonMRI,MRSandMRSI,inProc.ofthe22ndIEEEInternationalSymposiumonComputer-BasedMedicalSystems(CBMS),Albuquerque,NewMexico,Aug.2009,pp.1-8.7QiangWang,EiriniKaramaniLiacouras,EricksonMiranda,UdayS.Kanamalla,andVasileiosMegalooikonomou,ClassificationofbraintumorsusingMRIandMRSdata,Proc.SPIE6514,(2007)pp.65140S-18.8A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studhol
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 糖尿病腎病患者的出院指導(dǎo)與隨訪
- 續(xù)約補(bǔ)充合同范本
- 綠化補(bǔ)充合同范本
- 職業(yè)發(fā)展與就業(yè)指導(dǎo)(第2版)課件 專題八 就業(yè):就業(yè)權(quán)益與法律保護(hù)
- 養(yǎng)殖生物安全員培訓(xùn)課件
- 2025年兒童托管師資專業(yè)培訓(xùn)五年趨勢(shì)行業(yè)報(bào)告
- 公司資金使用管理承諾書(8篇)
- 并列復(fù)句課件
- 生產(chǎn)制造安全檢查及整改工具包
- 電子商務(wù)運(yùn)營(yíng)經(jīng)理電商平臺(tái)運(yùn)營(yíng)與銷售目標(biāo)績(jī)效考核表
- 2025四川資陽(yáng)現(xiàn)代農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘1人筆試歷年參考題庫(kù)附帶答案詳解
- 2025河北廊坊燕京職業(yè)技術(shù)學(xué)院選聘專任教師20名(公共基礎(chǔ)知識(shí))測(cè)試題附答案解析
- 0901 溶液顏色檢查法:2020年版 VS 2025年版對(duì)比表
- 各部門環(huán)境因素識(shí)別評(píng)價(jià)表-塑膠公司
- 2025遼寧丹東市融媒體中心下半年面向普通高校招聘急需緊缺人才5人筆試考試參考試題及答案解析
- 律所解除聘用協(xié)議書
- 2025年10月自考04184線性代數(shù)經(jīng)管類試題及答案含評(píng)分參考
- 海爾集團(tuán)預(yù)算管理實(shí)踐分析
- 煤礦2026年度安全風(fēng)險(xiǎn)辨識(shí)評(píng)估報(bào)告
- 2025年中國(guó)干冰發(fā)展現(xiàn)狀與市場(chǎng)前景分析
- 永輝超市存貨管理
評(píng)論
0/150
提交評(píng)論