已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
unsuspectedrelationshipswhichareofinterestorvaluetothedatabasesowners,ordataminers9.Duetothelargenumberofdimensionalityandthehugevolumeofdata,traditionalstatisticalmethodshavetheirlimitationsindatamining.Tomeetthechallengeofdatamining,articialintelligencebasedhumancomputerinteractivetechniqueshavebeenwidelyusedindatamining3,16.*ConceptualconstructiononincompletesurveydataShouhongWanga,*,HaiWangbaDepartmentofMarketing/BusinessInformationSystems,CharltonCollegeofBusiness,UniversityofMassachusettsDartmouth,285OldWestportRoad,NorthDartmouth,MA02747-2300,USAbDepartmentofComputerScience,UniversityofToronto,Toronto,ON,CanadaM5S3G4Received22March2003;receivedinrevisedform9September2003;accepted20October2003Availableonline26November2003AbstractTherawsurveydatafordataminingareoftenincomplete.Theissuesofmissingdatainknowledgediscoveryareoftenignoredindatamining.Thisarticlepresentstheconceptualfoundationsofdataminingwithincompletesurveydata,andproposesqueryprocessingforknowledgediscoveryandasetofqueryfunctionsfortheconceptualconstructioninsurveydatamining.Throughacase,thispaperdemonstratesthatconceptualconstructiononincompletedatacanbeaccomplishedbyusingarticialintelligencetoolssuchasself-organizingmaps.C2112003ElsevierB.V.Allrightsreserved.Keywords:Incompletesurveydata;Surveydatamining;Conceptualconstruction;Self-organizingmaps;Clusteranalysis;Knowledgediscovery;Queryprocessing1.IntroductionDataminingistheprocessoftrawlingthroughdatainthehopeofidentifyinginterpretablepatterns.D/locate/datakData&KnowledgeEngineering49(2004)311323Correspondingauthor.E-mailaddresses:(S.Wang),(H.Wang).0169-023X/$-seefrontmatterC2112003ElsevierB.V.Allrightsreserved.doi:10.1016/j.datak.2003.10.007aneectivemethodindealingwithhigh-dimensionaldata6,12.Moreimportantly,theSOMmethodprovidesabaseforthevisibilityofclustersofhigh-dimensionaldata.Thisfeatureisnot312S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323availableinanyotherdataanalysismethods.Itallowsthedataminertoanalyzeclustersbasedontheproblemdomain.Surveyisoneofthecommondataacquisitionmethodsfordatamining4.Indatamining,onecanrarelyndasurveydatasetthatcontainscompleteentriesofeachobservationforallofthevariables.Commonly,surveysandquestionnairesareoftenonlypartiallycompletedbyrespon-dents.Theextentofdamageofmissingdataisunknownwhenitisvirtuallyimpossibletoreturnthesurveyorquestionnairestothedatasourceforcompletion,butisoneofthemostimportantpartsofknowledgefordataminingtodiscover.Infact,missingdataisanimportantdebatableissueintheknowledgeengineeringeld15.Inminingasurveydatabasewithincompletedatathroughclusteranalysis,patternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsareknowledge.Forinstance,adatamineroftenwishestoknowhowreliableaclusteranalysisis;whenandwhycertaintypesofvaluesareoftenmissing;whatvariablesarecorrelatedintermsofhavingmissingvaluesatthesametime.Thesevaluablepiecesofknowledgecanbediscoveredonlyafterthemissingpartofthedatasetisfullyexplored.Thispaperdiscussestheissueofmissingdatainminingsurveydatabasesforknowledgedis-covery,presentstheconceptualfoundationsofconceptualconstruction,andproposesasetofqueryfunctionsforconceptualconstructioninSOM-baseddatamining.Therestofthepaperisorganizedasfollows.Section2discussestheissuesofmissingdatarelatedtodatamining.Section3introducesSOMforconceptualconstructiononincompletedata.Section4suggestsfourconceptsasknowledgediscoveryindataminingwithincompletedata.ItprovidesaschemeofconceptualconstructiononincompletedatausingSOM.Section5proposesaquerytoolthatisusedtomanipulateSOMforconceptualconstruction.Section6presentsacasestudythatappliesthequerytooltomanipulatetheSOMfortheconceptualconstructiononastudentopinionsurveydataset.Finally,Section7oersconcludingremarks.2.IssuesofmissingdataIncompletedatasetsareubiquitousindatamining.Therehavebeenmanytreatmentsofmissingdata.Oneoftheconvenientsolutionstoincompletedataistoeliminatefromthedatasetthoserecordsthataremissingvalues.This,however,ignorespotentiallyusefulinformationinthoserecords.Incaseswheretheproportionofmissingdataislarge,theconclusionsdrawnfromthescreeneddatasetaremorelikelybiasedormisleading.Therehavebeenmanynon-statisticaltechniquesfordatamining.Theself-organizingmaps(SOM)methodbasedonKohonenneuralnetwork12isoneofthepromisingtechniques.SOM-basedclustertechniqueshaveadvantagesoverothermethodsfordatamining.Dataminingtypicallydealswithveryhigh-dimensionaldata.Thatis,anobservationinthedatabasefordataminingistypicallydescribedbyalargenumberofvariables.Thecurseofdimensionalityturnsstatisticalcorrelationsofdatainsignicant,andthusmakesstatisticalmethodspowerless.TheSOMmethod,however,doesnotrelyonanyassumptionsofstatisticaltests,andisconsideredasS.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323313Anothersimpleapproachofdealingwithmissingdataistousegenericunknownforallmissingdataitems.Indatamining,unspeciedunknownforallmissingdataitemsoftencausesconfusionandmisinterpretation.Thethirdsolutiontodealingwithmissingdataistoestimatethemissingvalueinthedataeld.Inthecaseoftimeseriesdata,interpolationbasedontwoadjacentdatapointsthatareobservedispossible.Ingeneralcases,onemayusesomeexpectedvalueinthedataeldbasedonstatisticalmeasures7.However,indatamining,surveydataarecommonlyofthetypesofranking,cat-egory,multiplechoices,andbinary.Interpolationanduseofanexpectedvalueforaparticularmissingdatavariableinthesecasesaregenerallyinadequate.Moreimportantly,research2indicatesthatameaningfultreatmentofmissingdatashallalwaysbeindependentoftheproblembeinginvestigated.Morerecently,therehavebeenmathematicalmethodsforndingtheaggregateconceptualdirectionsofadatasetwithmissingdata(e.g.,1,10).Thesemethodsmakethemselvesdistinctfromthetraditionalapproachesoftreatingmissingdatabyfocusingonthecollectiveeectsofthemissingdatainsteadofindividualmissingvalues.Thissuperiorfeatureofthesemethodscanbebestbuiltupfordataminingonincompletedata.However,thesestatisticalmethodshavelimi-tations.First,itisassumedthatmissingvaluesoccurinarandomfashionorfollowacertaindistributionfunctions.Theirstrongassumptionsaboutthedistributionsofdataareofteninvalidespeciallyforcasesofsurveywithincompletedata.Second,thesemathematicalmodelsaredata-driven,insteadofproblem-domain-driven.Infact,asinglegenericconceptualconstructionalgorithmisinsucienttohandleavarietyofgoalsofdataminingsinceagoalofdataminingisoftenrelatedtoitsspecicproblemdomain.Knowledgediscoveryindatabasesisthenon-trivialprocessofidentifyingvalid,novel,potentiallyuseful,andultimatelyunderstandablepatternsofdata8.Followingthisdenition,thisresearchemphasizestwoaspectsofconceptconstructionindataminingwithincompletedata.First,thecriteriaofvalidity,novelty,usefulnessoftheconceptstobeconstructedindataminingwithincompletedatacouldbeproblem-dependent.Thatis,theinterestofadatapatterndependsonthedatamineranddoesnotsolelydependontheestimatedstatisticalstrengthofthepattern14.Second,theconceptualconstructionbasedontheincompletedataisaccomplishedthroughheuristicsearchincombinatorialspacesbuiltoncomputerandhumancognitivetheories13.Humancomputercollaborationconceptconstructionistheinteractiveprocessbetweenthedataminerandcomputertoextractnovel,plausible,useful,relevant,andinterestingknowledgeassociatedwiththemissingdata.Inourview,dataminingdiersfromtraditionalstatisticsindealingmissingdatainmanyways.(1)Dataminingattemptstoextractunsuspectedandpotentiallyusefulpatternsfromthedataforthedataminerswithnovelgoalsrelatedtothemissingdata,ratherthantoestimatetheindi-vidualvaluesofthemissingdata.(2)Dataminingisahumancenteredprocessimplementedthroughknowledgediscoveryloopscoupledwithhumancomputerinteractiontoperceivetheimpactofthemissingdataatanaggregatelevel,ratherthanaone-waymathematicalderivationbasedonunveriedassump-tions.3.Toolforconceptualconstruction:self-organizingmaps(SOM)Givenalargesetofhigh-dimensionalsurveysamples,thereusuallybeasignicantnumberofobservationshavemissingvalues;however,notallmissingdataarerelevanttothedataminerC213sinterest.Hence,anysimplebrute-forcesearchmethodformissingdataisnotonlyinfeasibleforahugeamountofdata,butalsohelplesswhenthedatamineristoidentifyproblems,ordevelopconcepts,throughdatamining.Toidentifyproblemsordevelopconcepts,thedataminerneedsatooltoobserveunsuspectedpatternsoftheavailabledataandthemissingparts.Self-organizingmaps(SOM)12havebeenwidelyusedforclustering,sinceSOMaremorecomputationallyecientthanthepopulark-meansclusteringalgorithm.Moreimportantly,SOMprovidedatavisualizationforthedataminertoviewhigh-dimensionaldata11.Research14,16314S.Wang,H.Wang/Data&KnowledgeEngineering49(2004)311323indicatesthatSOMareeectiveindataminingfortheidenticationofunsuspectedpatternofthedata.Specically,SOMcanbeusedforclusteranalysisonmultivariatesurveydata.ThisstudytakesonestepfurtherandusesSOMasatoolforconceptconstructionrelatedtomissingdata.Conceptualconstructiononincompletedataistoinvestigatethepatternsofthemissingdataaswellasthepotentialimpactsofthesemissingdataontheminingresultsbasedonlyonthecompletedata.Asseenlaterinourillustrativeexamples,SOMprovideamechanismforhumancomputercollaborationtoconstructconceptsfromthedatawithmissingvalues.SOMcanlearncertainusefulfeaturesfo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼師熱身活動(dòng)方案策劃(3篇)
- 回填坡道施工方案(3篇)
- 墻藝施工方案(3篇)
- 家清活動(dòng)策劃方案(3篇)
- 茶室設(shè)計(jì)方案匯報(bào)
- 成本管理基礎(chǔ)企業(yè)培訓(xùn)
- 2026年中職第三學(xué)年(審計(jì)事務(wù))內(nèi)部審計(jì)基礎(chǔ)綜合測(cè)試題及答案
- 中職第三學(xué)年(國(guó)際商務(wù))進(jìn)出口業(yè)務(wù)操作2026年階段測(cè)試題
- 2025年大學(xué)大一(化學(xué)工程)物理化學(xué)階段測(cè)試題及答案
- 一年級(jí)語(yǔ)文(句子排序)2026年下學(xué)期單元檢測(cè)卷
- 礦山應(yīng)急管理培訓(xùn)
- 高中化學(xué)會(huì)考復(fù)習(xí)重點(diǎn)資料全
- 技術(shù)股入股協(xié)議書
- DL-T5796-2019水電工程邊坡安全監(jiān)測(cè)技術(shù)規(guī)范
- 魁北克腰痛障礙評(píng)分表(Quebec-Baclain-Disability-Scale-QBPDS)
- 實(shí)驗(yàn)室生物安全培訓(xùn)-課件
- 八年級(jí)上冊(cè)歷史【全冊(cè)】知識(shí)點(diǎn)梳理背誦版
- 《工會(huì)法》及《勞動(dòng)合同法》教學(xué)課件
- 股權(quán)轉(zhuǎn)讓協(xié)議書常電子版(2篇)
- 2023年副主任醫(yī)師(副高)-推拿學(xué)(副高)考試歷年高頻考點(diǎn)真題演練附帶含答案
- 產(chǎn)品質(zhì)量法課件
評(píng)論
0/150
提交評(píng)論