已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
附錄A:英文原文LeastsquaresphaseunwrappinginwaveletdomainAbstract:Leastsquaresphaseunwrappingisoneoftherobusttechniquesusedtosolvetwo-dimensionalphaseunwrappingproblems.However,owingtoitssparsestructure,theconvergencerateisveryslow,andsomepracticalmethodshavebeenappliedtoimprovethiscondition.Inthispaper,anewmethodforsolvingtheleastsquarestwo-dimensionalphaseunwrappingproblemispresented.Thistechniqueisbasedonthemultiresolutionrepresentationofalinearsystemusingthediscretewavelettransform.Byapplyingthewavelettransform,theoriginalsystemisdecomposedintoitscoarseandfineresolutionlevels.Fastconvergenceinseparatecoarseresolutionlevelsmakestheoverallsystemconvergenceveryfast.1introductionTwo-dimensionalphaseunwrappingisanimportantprocessingstepinsomecoherentimagingapplications,suchassyntheticapertureradarinterferometry(InSAR)andmagneticresonanceimaging(MRI).Intheseprocesses,three-dimensionalinformationofthemeasuredobjectscanbeextractedfromthephaseofthesensedsignals,However,theobseryedphasedataarewrappedprincipalvalues,whicharerestrictedina2modulus,andtheymustbeunwrappedtotheirtrueabsolutephasevalues.Thisisthetaskofthephaseunwrapping,especiallyfortwo-dimensionalproblems.Thebasicassumptionofthegeneralphaseunwrappingmethodsisthatthediscretederivativesoftheunwrappedphaseatallgridpointsarelessthaninabsolutevalue.Withthisassumptionsatisfied,theabsolutephasecanbereconstructedperfectlybyintegratingthepartialderivativesofthewrappedphasedata.Inthegeneralcase,however,itisnotpossibletorecoverunambiguouslytheabsolutephasefromthemeasuredwrappedphasewhichisusuallycorruptedbynoiseoraliasingeffectssuchasshadow,layover,etc.Insuchcases,thebasicassumptionisviolatedandthesimpleintegrationprocedurecannotbeappliedowingtothephaseinconsistenciescausedbythecontaminations.AfterGoldstein-etalintroducedtheconceptofresiduesinthetwo-dimensionalphaseunwrappingproblemofInSAR,manyphaseunwrappingapproachestocopewiththisproblemhavebeeninvestigated.Path-following(orintegration-based)methodsandleastsquaresmethodsarethemostrepresentativetwobasicclassesinthisfield.TherehavealsobeensomeotherapproachessuchasGreenmethods,Bayesianregularizationmethods,imageprocessing-basedmethods,andmodel-basedmethods.Leastsquaresphaseunwrapping,establishedbyGhigliaandRomero,isoneofthemostrobusttechniquestosolvethetwo-dimensionalphaseunwrappingproblem.Thismethodobtainsanunwrappedsolutionbyminimizingthedifferencesbetweenthepartialderivativesofthewrappedphasedataandtheunwrappedsolution.Leastsquaresmethodisdividedintounweightedandweightedleastsquaresphaseunwrapping.Toisolatethephaseinconsistencies,aweightedleastsquaresmethodshouldbeused,whichdepressesthecontaminationeffectsbyusingtheweightingarrays.GreenmethodsandBayesianmethodsarealsobasedontheleastsquaresscheme.Butthesemethodsaredifferentfromthoseof,intheconceptofphaseinconsistencytreatment.Thus,thispaperconcernsonlytheleastsquaresphaseunwrappingproblemofGhigliascategory.Theleastsquaresmethodiswell-definedmathematicallyandequivalenttothesolutionofPoissonspartialdifferentialequation,whichcanbeexpressedasasparselinearequation.anteriormethodisusuallyusedtosolvethislargelinearequation.However,alargecomputationtimeisrequiredandthereforeimprovingtheconvergencerateisaveryimportanttaskwhenusingthismethod.Somenumericalalgorithmshavebeenappliedtothisproblemtoimproveconvergenceconditions.Anapproachforfastconvergenceofasparselinearequationistotransfertheoriginalequationsystemintoanewsystemwithlargersupports.Multiresolutionorhierarchicalrepresentationconceptshaveoftenbeenusedforthispurpose.Recently,wavelettransformhasbeeninvestigateddeeplyinscienceandengineeringfieldsasasophisticatedtoolforthemultiresolutionanalysisofsignalsandsystems.Itdecomposesasignalspaceintoitslow-resolutionsubspaceandthecomplementarydetailsubspaces.Inourmethod,thediscretewavelettransformisappliedtothelinearsystemofleastsquaresphaseunwrappingproblemtorepresenttheoriginalsysteminseparatemultiresolutionspaces.Inthisnewtransferredsystem,abetterconvergenceconditioncanbeachieved.Thismethodwasbrieflyintroducedinoutpreviouswork,wheretheproposedmethodwasappliedonlytotheunweightedproblem,Inthispaper,thisnewmethodisextendedtotheweightedleastsquaresproblem.Also,afulldescriptionoftheproposedmethodisgivenhere.2Weightedleastsquaresphaseunwrapping:areviewLeastsquaresphaseobtainsanunwrappedsolutionbyminimizingthe2L-normbetweenthediscretepartialderivativesofthewrappedphasedataandthoseoftheunwrappedsolutionfunction.Giventhewrappedphase,ijonanMNrectangulargrid(01iM,01jN),thepartialderivativesofthewrappedphasearedefinedas,1,xijijijW,1,yijijijW(1)WhereWisthewrappingoperatorthatwrapsthephaseintotheinterval,.Thedifferencesbetweenthepartialderivativesofthesolution,ijandthosein(1)canbeminimizedintheweightedleastsquaressense,bydifferentiatingthesum22,1,1,xxyyijijijijijijijijijijww(2)Withrespectto,ijandsettingtheresulttozero.In(2),thegradientweights,xijwand,yijw,areusedtopreventsomephasevaluescorruptedbynoiseoraliasingfromdegradingtheunwrapping,andaredefinedby22,1,min,xijijijwww,22,1,min,yijijijwww,01ijw(3)Theweightedleastsquaresphaseunwrappingproblemistofindthesolution,ijthatminimizesthesumof(2).Theinitialweightarray,ijwisuser-definedandsomemethodsfordefiningtheseweightsarepresentedin1,11.Whenalltheweights,1ijw,theaboveequationistheunweightedphaseunwrappingproblem.Sinceweightarrayisrelatedtotheexactitudeoftheresultantunwrappedsolution,itmustbedefinedproperly.Inthispaper,however,itisassumedthattheweightarrayisdefinedalreadyforthegivenphasedataandhowtodefineitisnotcoveredhere.Onlytheconvergenceratesissueoftheweightedleastsquaresphaseunwrappingproblemisconsideredhere.Theleastsquaressolutiontothisproblemyieldsthefollowingequation:,1,1,1,1,1,1,xxyyijijijijijijijijijijijijijwwww(4)Where,ijistheweightedphaseLaplaciandefinedby,1,1,1,1xxxxxxxxijijijijijijijijijwwww(5)Theunwrappedsolution,ijisobtainedbyiterativelysolvingthefollowingequation,1,1,1,1,1,1,1,1/xxyyxxyyijijijijijijijijijijijijijijwwwwwwww(6)Equation(4)istheweightedanddiscreteversionofthePoissonspartialdifferentialequation(PDE),2.Byconcatenatingallthenodalvariables,ijintoMN1onecolumnvector,theaboveequationisexpressedasalinearsystemA(7)WherethesystemmatrixAisofsizeKK(K=MN)andisacolumnvectorof,ij,Thatis,thesolutionoftheleastsquaresphaseunwrappingproblemcanbeobtainedbysolvingthislinearsystem,andforgivenAand,whicharedefinedfromtheweightarray,xijwandthemeasuredwrappedphase,ijtheunwrappedphasehastheuniquesolution1A,ButsinceAisaverylargematrix,thedirectinverseoperationispracticallyimpossible.ThestructureofthesystemmatrixAisverysparseandmostoftheoff-diagonalelementsarezero,whichisevidentfrom(4).DirectmethodsbasedonthefastFouriertransform(FFT)orthediscretecosinetransform(DCT)canbeappliedtosolvetheunweightedphaseunwrappingproblem.However,intheweightedcase,iterativemethodsshouldbeadopted.TheclassicaliterativemethodforsolvingthelinearsystemistheGauss-Seidelrelaxation,whichsolves(6)bysimpleiterationuntilitconverges.However,thismethodisnotpracticalowingtoitsextremelyslowconvergence,whichiscausedbythesparsecharacteristicsofthesystemmatrixA.Somenumericalalgorithmssuchaspreconditionedconjugategradient(PCG),ormultigridmethodwereappliedtoimplementtheweightedleastsquaresphaseunwrapping.ThePCGmethodconvergesrapidlyonunweightedphaseunwrappingproblemsorweightedproblemsthatdonothavelargephasediscontinuities.However,ondatawithlargediscontinuities,itrequiresmanyiterationstoconverge.ThemultigridmethodisanefficientalgorithmtosolvealinearsystemandperformsmuchbetterthantheGauss-SeidelmethodandthePCGmethodinsolvingtheleastsquaresphaseunwrappingproblem.However,inthewe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年湖南科技職業(yè)學(xué)院單招綜合素質(zhì)考試參考題庫帶答案解析
- 互聯(lián)網(wǎng)醫(yī)療模式創(chuàng)新與實踐
- 醫(yī)療影像處理算法的研究與應(yīng)用
- 臨床思維訓(xùn)練與疾病診斷
- 2026年博爾塔拉職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考試題帶答案解析
- 醫(yī)療護理崗位禮儀與患者安全
- 2026年河北軌道運輸職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試參考題庫帶答案解析
- 心臟內(nèi)科護理實踐與探索
- 醫(yī)療事故預(yù)防:禮儀在先
- 2026年重慶工商職業(yè)學(xué)院單招綜合素質(zhì)筆試模擬試題附答案詳解
- 小區(qū)物業(yè)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2023年移動綜合網(wǎng)絡(luò)資源管理系統(tǒng)技術(shù)規(guī)范功能分冊
- 幼兒園大班班本課程-邂逅水墨課件
- 智慧農(nóng)貿(mào)市場解決方案-智慧農(nóng)貿(mào)市場系統(tǒng)
- 借款服務(wù)費合同
- 出生證明與預(yù)防接種聯(lián)辦
- 土石方工程冬季施工方案
- 全球十大嚴(yán)重核事故課件
- 天貓超市考試題及答案
- ADS中文入門教程
- JJF 1366-2012溫度數(shù)據(jù)采集儀校準(zhǔn)規(guī)范
評論
0/150
提交評論