已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Z.Panetal.(Eds.):ICAT2006,LNCS4282,pp.785795,2006.Springer-VerlagBerlinHeidelberg2006RecognitionandLocationofFruitObjectsBasedonMachineVisionHuiGu,YayaLu,JilinLou,andWeitongZhangInformationEngineeringCollege,ZhejiangUniversityofTechnology,310014,Hangzhou,C,oo327,phonixlou,Abstract.Thispaperdiscussedthelowlevelmachinevisiononfruitandvegetableharvestingrobot,introducedtherecognitionandlocationoffruitandvegetableobjectsundernaturescenes,putforwardanewsegmentationmethodcombinedwithseveralcolormodels.Whatsmore,itpresentedanovelconceptionforthedeterminationoftheabscissionpoint,successfullyresolvedthelocationofcenterandabscissionpointwhenthefruitwerepartiallyoccluded.Meanwhile,bythetechniqueofgeometry,itsettledthelocationsoftheabscissionpointwhenthefruitgrewaskew.Itprovedgoodeffectunderthenaturescene.Keywords:Machinevision,fruitobject,recognition,location.1IntroductionDuringtheprocessofhumanconqueringtheNature,rebuildingtheNatureandpromotingthesociety,humansarefacingtheproblemofabilitylimitation.Asaresult,humanshavebeenseekingfortherobotstosubstitutethemantocompletecomplicatedtasks,andtheintelligentrobotisthebestchoice.Asweallknow,visionisthemainwayofhumansapperceivingtheworld.About80%informationisgotthroughvision.So,itisvitaltograntvisionfunctionforintelligentrobots.Here,wecandefinethemachinevisionasfollows:itisabletoproducesomedescriptionaboutthecontentoftheimageafterprocessingtheinputimage1.Therearemanyfieldsrelatedwithmachinevision.So,italsohasawideapplicationinvariousaspects,frommedicalimagetoremotesensedimage,fromindustrialinspectiontoagriculturalareas,etc.Thefruitandvegetableharvestingrobotwhichwearegoingtodiscussisonekindofautomaticmechanicalharvestingsystemspossessingtheperceptiveability,canbeprogrammedtoharvest,transferandpackthecrops2.Duringtheprocessofharvesting,thechiefproblemofthevisionsystemistorecognizeandlocatethefruitobject3.Here,recognitionmeanssegmentationofthefruitobjectsfromthecomplicatedbackground4.Andlocationincludestwoaspects:locationofthefruitcenterandabscissionpoint.786H.Guetal.Recently,thereremanyresearchesaboutfruitandvegetableharvestingrobotbasedonmachinevision56.CaiJian-rongpresentedthemachinevisionrecognitionmethodsunderthenaturescene.UsingtheOtsualgorithm,itgotthesegmentationthresholdautomaticallyandextractedthetarget7.Miyanagaintroducedtheseedinggraftingtechniquebasedonmachinevisionandtherobotinventedbythemhasbeenputintoproduction8.SlaughterD.Csetuponeorangeclassiermodelbyusingthecolorfeatureinthechromaticdigitalimage9.Amongtheseresearches,therehavebeenmanymethodsofextractingthefruitsfromcomplicatednaturescene.Butthebasicconceptionisextractingthefruitobjectbyconvertingonecolormodeltoanotheronewhichiseasiertoprocessormuchmoresuitableforthecase.However,still,therearetwoproblemsremainunsettled:1)Howtodeterminetheabscissionpointwhenthefruitsgrowaskew;2)Howtodeterminethecenterandabscissionpointwhentherearesomanyfruitoverlappedeachotherthatitisimpossibletodetectthewholeedge.Ifbothoftheproblemsremainunsettled,itmeanstheharvestingmaybeafailure.And,whatismoreimportant,thereisonlyabout40%ofthefruitandvegetableisvisibleintheorchard10,whichmeansabout60%objectsarepartiallyoccludedorcompletelyoccluded.Generally,theagriculturalrobotsarefitwithfanssoastoblowtheleavescoveringthefruit.So,forthefruitoccludedcompletely,itmaybepartiallyresolvedinthisway.So,inthepaper,weonlydiscussedtheproblemofthefruitpartiallyoccluded,inparticular,thecasethatonefruitoverlapanotherone.Asawhole,theproblemwearetodiscussbelongstothelowlevelmachinevision,andisoneofthekeystepsinthemachinevision.2MethodologyUsedinthePaper2.1MainIdeaFromtheanalysisabove,weknew,inordertosegmentthefruitfromleavesandbranches,weshouldusecolormodelsuitscertainsituations.TheRGBcolormodelcommonlyusedisnotsuitablefortheorchardimages.BecauseinRGBcolorspace,thetricolor(RGB)notonlyrepresentthehuevalue,butalsorepresentthebrightness.So,thechangeoftheoutwardilluminationmayaddthedifficultyoftherecognition,soRGBisundependableintheprocessofthesegmentation.Inordertomakeuseofthefruitsclusteringfeatureinhuespace,weneedtoseparatethehueandbrightnessinformation.WecanachievethisgoalbytransferringtheRGBtothemodelswhichseparatehueandbrightness.2.2ColorModelsWeusethreetypesofcolormodelsinthepaper.ThefirstoneisLCD(luminanceandcolordifference)model.Therearefourcolorattributesinthismodel,includingbrightnessinformationY,colordifferenceofred,Cr,colordifferenceofgreenCg,colordifferenceofblueCb.Thetransformformulaisasfollows:RecognitionandLocationofFruitObjectsBasedonMachineVision787=+=YBCYGCYRCBGRYbgr114.0587.0299.0.(1)Duringtheprocessofexperiment,wefoundthatthecolordifferenceofredoffruitismuchhigherthanthatofleavesorbranches,eventheunripefruit,suchasunripetomatothatwouldbereferredlater.SoweonlyhavetoconsideraboutthecolordifferenceofredCr.ThesecondmodelweusedisNormalizedRGB.Thediagramwasusedtorepresentthecolorpropertiesofthethreeportions.Thetransformformulaisdefinedasfollows:+=+=+=)/()/()/(BGRBbBGRGgBGRRr.(2)itisobviousitsatisfies:1=+bgr.Combinedtheadvantagesoftheabovetwomodels,wecanconcludethethirdcolormodelcalledLHMinthispaper.ChoosingYandCrfromthefirstcolormodel,randgfromthesecondmodel;wecanconstructtheformulaasfollow:+=+=+=)/()/(114.0587.0299.0BGRGgBGRRrYRCBGRYr.(3)3SegmentationUnderthenaturesceneoftheorchard,thefactorscontainingthenon-uniformillumination,theocclusionoftheleafandbranchallmakeitmoredifficulttosegment.Atpresent,wecanclassifythechromaticimagesegmentationintothreeclasses:(1)Segmentationbasedonthreshold;(2)Segmentationbasedonedgeinspectingandareagrowing;(3)Segmentationbasedoncolorclustering11.3.1ClusteringandClassifierTheprimaryconceptionofclusteringistodistinguishthedifferentobjectswhichincludedifferentclassesofobjectsanddifferentpartsofthesameobject12.Allclassificationalgorithmsarebasedontheassumptionthattheimageinquestiondepictsoneormorefeaturesandthateachofthesefeaturesbelongstooneofseveraldistinctandexclusiveclasses.Thetraditionalwayofclassifiercomprisestwophasesofprocess:trainingandtesting.Intheinitialtrainingphase,characteristicpropertiesoftypicalimagefeaturesareisolatedand,basedonthese,auniquedescriptionofeachclassificationcategory,i.e.trainingclass,iscreated.Inthesubsequenttestingphase,thesefeature-spacepartitionsareusedtoclassifyimagefeatures.788H.Guetal.Intheexperiment,wesampled60pixelsofleaf,branch,andfruitrespectivelyandconstructedaclassifier.Adoptingtwofeaturepatternsmandn,weformedthedecisionfunctions:cbnamnmf+=),(,wherea,b,andcarearbitraryconstantsaslongasthepointsonthelinesatisfiesthecondition0),(=nmf.Here,featurepatternmaybecolor,shape,size,oranypropertiesoftheobjects.Accordingtothedecisionfunctions0),(nmfor0),(nmf,wecandividetheimageintotwopartsasshowninFig1:.Fig.1.Modelofclassifier3.2SegmentationoftheFruitObjectsInthisstudy,weadoptedthesegmentationmethodofseveralthresholds.Thethresholdsarederivedfromtheabovethreemodelsoftheimageusingthedecisionfunctions.Accordingtotheaboveparagraphs,wecouldgetthreedecisionfunctions:thefirstfunction,F1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 東北電力大學(xué)《中國(guó)近現(xiàn)代史綱要實(shí)務(wù)》2024-2025學(xué)年期末試卷(A卷)
- 遼寧省沈陽(yáng)市五校協(xié)作體2025-2026學(xué)年高二上學(xué)期期中考試政治試卷(解析版)
- 湖南省多校聯(lián)考2025-2026學(xué)年高三上學(xué)期10月月考政治試題(解析版)
- 2025年一級(jí)注冊(cè)建筑師考試題庫(kù)500道及參考答案(典型題)
- 2026年土地登記代理人之土地登記相關(guān)法律知識(shí)考試題庫(kù)500道附完整答案(全優(yōu))
- 2026年國(guó)家電網(wǎng)招聘之文學(xué)哲學(xué)類考試題庫(kù)300道【必考】
- 2026年咨詢工程師之宏觀經(jīng)濟(jì)政策與發(fā)展規(guī)劃考試題庫(kù)500道附答案【模擬題】
- 2026年國(guó)家電網(wǎng)招聘之文學(xué)哲學(xué)類考試題庫(kù)300道含答案【考試直接用】
- 2026年咨詢工程師之宏觀經(jīng)濟(jì)政策與發(fā)展規(guī)劃考試題庫(kù)500道【名校卷】
- 2026年國(guó)家電網(wǎng)招聘之文學(xué)哲學(xué)類考試題庫(kù)300道(黃金題型)
- 企業(yè)對(duì)外投資合同范例
- DG∕T 149-2021 殘膜回收機(jī)標(biāo)準(zhǔn)規(guī)范
- 基于項(xiàng)目的溫室氣體減排量評(píng)估技術(shù)規(guī)范 鋼鐵行業(yè)煤氣制化工產(chǎn)品 征求意見(jiàn)稿
- 2025連云港市灌云縣輔警考試試卷真題
- 污水管道疏通方案
- 氟橡膠膠漿壽命的研究
- HGT20638-2017化工裝置自控工程設(shè)計(jì)文件深度規(guī)范
- 東北抗聯(lián)英雄人物智慧樹(shù)知到期末考試答案章節(jié)答案2024年牡丹江師范學(xué)院
- 【課堂練】《聲音》單元測(cè)試
- Turning Red《青春變形記(2022)》完整中英文對(duì)照劇本
- 《抽水蓄能電站建設(shè)征地移民安置規(guī)劃大綱編制規(guī)程》
評(píng)論
0/150
提交評(píng)論