版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第一章集合、常用邏輯用語、推理與證明、復(fù)數(shù)、程序框圖第一章集合、常用邏輯用語、推理與證明、復(fù)數(shù)、程序框圖第第1 1講講集合與常見邏輯用語集合與常見邏輯用語知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理1.集合的有關(guān)概念(1)集合元素的特性:確定性、互異性、無序性.(2)集合與元素的關(guān)系:若a屬于集合A,記作aA;若b不屬于集合A,記作bA.(3)集合的表示方法:列舉法、描述法、圖示法.2.常用數(shù)集及記法知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理3.集合間的基本關(guān)系 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理4.集合
2、的三種基本運算 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理5.四種命題的關(guān)系與真假判斷 (1)兩個命題互為逆否命題,它們有相同的真假性;(2)兩個命題互為逆命題或互為否命題,它們的真假性沒有關(guān)系.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理6.命題pq、pq、-p的真假判定 簡記為“pq兩真才真,一假則假;pq一真則真,兩假才假;-p與p真假相反”. 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理7.量詞(1)全稱量詞和存在量詞(2)全稱命題和特稱
3、命題 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理8.條件問題(1)充分條件、必要條件與充要條件知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升知 識 梳 理(2)充要條件常用的三種判斷方法定義法:直接判斷若p則q、若q則p的真假.等價法:利用AB與 B A,BA與 A B,AB與 B A的等價關(guān)系,對于條件或結(jié)論是否定式的命題,一般運用等價法.利用集合間的包含關(guān)系判斷:若AB,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件.(3)判斷充要條件需注意三點要分清條件與結(jié)論分別是什么;要從充分性、必要性兩個方面進行判斷;直接判斷比較困難時,可舉
4、出反例說明.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式題型一集合的基本概念【例1】(1)設(shè)集合A=1,2,3,B=4,5,M=x|x=a+b,aA,bB,則M中的元素個數(shù)為()A.3B.4C.5D.6(2)若集合A=xR|ax2-3x+2=0中只有一個元素,則a=()知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式【解析】 (1)因為集合M中的元素x=a+b,aA,bB,所以當(dāng)b=4,a=1,2,3時,x=5,6,7;當(dāng)b=5,a=1,2,3時,x=6,7,8.由集合元素的互異性,可知x=5,6,7,8.即M=5,6,7,8,共有4個元素.(2
5、)若集合A中只有一個元素,則方程ax2-3x+2=0只有一個實數(shù)根或有兩個相等的實數(shù)根.【答案】(1)B(2)D 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式【規(guī)律方法】與集合中的元素有關(guān)的問題的求解策略(1)確定集合中的元素是什么,即集合是數(shù)集還是點集.(2)看這些元素滿足什么限制條件.(3)根據(jù)限制條件列式求參數(shù)的值或確定集合中元素的個數(shù),要注意檢驗集合是否滿足元素的互異性.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式變式訓(xùn)練一1.已知集合A=x|xZ,且 Z,則集合A中的元素個數(shù)為()A.2B.3 C.4D.52.已知集合A=m+2,2
6、m2+m,若3A,則m的值為. C 所以x的值分別為3,5,-1,1,故集合A中的元素個數(shù)為4. 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式題型二集合間的基本關(guān)系【例2】(1)已知集合A=x|42x16,Ba,b,若AB,則實數(shù)a-b的取值范圍是. (2)已知集合A=x|-2x5,B=x|m+1x2m-1,若BA,則實數(shù)m的取值范圍為. 【解析】 (1)集合A=x|42x16=x|222x24=x|2x4=2,4.因為AB,所以a2,b4.所以a-b2-4=-2,即實數(shù)a-b的取值范圍是(-,-2.(2)因為BA,所以若B=,則2m-1m+1,此時m2.解得2m3.
7、由、可得,符合題意的實數(shù)m的取值范圍為m3.【答案】 (1)(-,-2(2)(-,3知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式【規(guī)律方法】1.集合間基本關(guān)系的兩種判定方法(1)化簡集合,從表達式中尋找兩集合的關(guān)系.(2)用列舉法(或圖示法等)表示各個集合,從元素(或圖形)中尋找關(guān)系.2.根據(jù)集合間的關(guān)系求參數(shù)的方法,已知兩集合間的關(guān)系求參數(shù)時,關(guān)鍵是將兩集合間的關(guān)系轉(zhuǎn)化為元素或區(qū)間端點間的關(guān)系,進而轉(zhuǎn)化為參數(shù)滿足的關(guān)系,解決這類問題常常要合理利用數(shù)軸、Venn圖化抽象為直觀進行求解.易錯警示:BA(A),應(yīng)分B=和B兩種情況討論.知 識 梳 理典 例 變 式基 礎(chǔ)
8、訓(xùn) 練能 力 提 升典 例 變 式變式訓(xùn)練二1.已知集合A=x|1x5,C=x|-axa+3.若AC=C,則a的取值范圍是. (-,-1 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式2.已知集合A=x|-1x3,B=x|-mx0時,因為A=x|-1x3.當(dāng)BA時,在數(shù)軸上標(biāo)出兩集合,如圖,知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式題型三集合的基本運算(高頻考點)集合的基本運算是歷年各地高考的熱點,每年必考,常和不等式的解集、函數(shù)的定義域、值域相結(jié)合命題,主要以選擇題的形式出現(xiàn).試題多為低檔題.高考對集合運算的考查主要從以下三個角度命題:求集
9、合間的交或并運算;求集合的交、并、補的混合運算;已知集合的運算結(jié)果求參數(shù)的值(范圍).知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式【例3】(1)(2019桂林模擬)已知集合M=x|-1x3,N=-1,1,則下列關(guān)系正確的是()A.MN=-1,1,3B.MN=x|-1x3C.MN=-1D.MN=x|-1x1(2)設(shè)集合A=x|-1x2,B=x|xa,若AB,則a的取值范圍是()A.-12C.a-1D.a-1(3)(2019廈門模擬)已知集合A=x|xa,B=x|x2-3x+20,若AB=B,則實數(shù)a的取值范圍是()A.a1B.a2知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn)
10、練能 力 提 升典 例 變 式【解析】 (1)MN=x|-1x-1,故選D.(3)B=x|1x2,由AB=B知BA,則a2,故選C.【答案】(1)B(2)D(3)C知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式【規(guī)律方法】解決集合運算問題需注意以下三點(1)看元素組成,集合是由元素組成的,從研究集合中元素的構(gòu)成入手是解決集合運算問題的前提.(2)看集合能否化簡,集合能化簡的先化簡,再研究其關(guān)系并進行運算,可使問題簡單明了,易于求解.(3)要借助Venn圖和數(shù)軸使抽象問題直觀化.一般地,集合元素離散時用Venn圖表示;集合元素連續(xù)時用數(shù)軸表示,并注意端點值的取舍.知 識
11、梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式變式訓(xùn)練三1.(2017北京卷)若集合A=x|-2x1,B=x|x3,則AB=()A.x|-2x-1B.x|-2x3C.x|-1x1 D.x|1x3A 【解析】 由集合交集的定義可得AB=x|-2x-1,故選A. 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式2.已知全集U=1,2,3,4,5,6,集合P=1,3,5,Q=1,2,4,則(UP)Q=()A.1 B.3,5C.1,2,4,6 D.1,2,3,4,53.(2019東北三省四市聯(lián)考)設(shè)集合A=x|x|1,B=x|x(x-3)0,則AB=()A.(-1
12、,0)B.(0,1)C.(-1,3)D.(1,3)C 【解析】 因為U=1,2,3,4,5,6,P=1,3,5,所以UP=2,4,6,因為Q=1,2,4,所以(UP)Q=1,2,4,6.【解析】 A=x|-1x1,B=x|0 x3,所以AB=x|-1x3,故選C.C 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式4.已知集合A=x|x2-5x-60,B=x|2x1,則圖中陰影部分表示的集合是 . x|0 x6 【解析】 由x2-5x-60,解得-1x6,所以A=x|-1x6.由2x1,解得x0,所以B=x|x0.又圖中陰影部分表示的集合為(UB)A,因為UB=x|x0,
13、所以(UB)A=x|0 xy,則-xy,則x2y2,在命題pq;pq;p(-q);(-p)q中,真命題是()A.B.C.D.【解析】 p為真;對于命題q:若xy,令x=1,y=-2,顯然x20,ln(x+1)0;命題q:若ab,則a2b2.下列命題為真命題的是()A.pqB.p( q)C.( p)qD.( p)( q)B 【解析】 x0,x+11,ln(x+1)ln1=0.命題p為真命題, p為假命題.ab,取a=1,b=-2,而12=1,(-2)2=4,此時a2b2,命題q為假命題, q為真命題.pq為假命題,p q為真命題, pq為假命題, p q為假命題.故選B.知 識 梳 理典 例 變
14、 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式題型五充分條件與必要條件的判定【例5】(1)(2018北京卷)設(shè)a,b,c,d是非零實數(shù),則“ad=bc”是“a,b,c,d成等比數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件(2)設(shè)集合M=x|0 x3,N=x|02”是“x2+2x-80”成立的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件B 【解析】 由x2+2x-80,可解得x2,所以“x2”是“x2+2x-80”成立的充分不必要條件,故選B.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式2.
15、若“x2m2-3”是“-1x0”是“xa”的必要不充分條件,則a的最小值為. A 【解析】 由題意知(-1,4)(2m2-3,+),2m2-3-1,解得-1m1,故選A.3 【解析】 由x2-x-60,解得x3.因為“x2-x-60”是“xa”的必要不充分條件,所以x|xa是x|x3的真子集,即a3,故a的最小值為3.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式題型六全(特)稱命題的否定(高頻考點)全稱命題與特稱命題是高考的??純?nèi)容,多和其他數(shù)學(xué)知識相結(jié)合命題,常以選擇題、填空題的形式出現(xiàn).高考對全稱命題、特稱命題的考查主要從以下兩個角度命題:判斷全稱命題、特稱命題的
16、真假性;全稱命題、特稱命題的否定.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升典 例 變 式變式訓(xùn)練六1.命題“對任意xR,都有x2ln 2”的否定為()A.對任意xR,都有x2ln 2B.不存在xR,使得x2m”是真命題,則m的值可以是()A 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升基 礎(chǔ) 訓(xùn) 練1.(2019山東濰坊月考)已知集合M=x|x2-x-2=0,N=-1,0,則MN=()A.-1,0,2B.-1C.0D.2.(2019廣東惠州模擬)已知集合M=0,1,2,3,N=x|x2=1,則MN
17、=()A.1B.-1,1C.1,0 D.-1,1,0A 【解析】 集合M=x|x2-x-2=0=x|x=2或x=-1=-1,2,N=-1,0,則MN=-1,0,2.【解析】 N=x|x2=1=-1,1,MN=1. A 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升基 礎(chǔ) 訓(xùn) 練是()A.x|-3x-1B.x|-3x0C.x|-1x0D.x|-1x0,B=x|x-a0,若UBA,則實數(shù)a的取值范圍是()A.(-,1)B.(-,2C.1,+)D.2,+)6.(2019湖南長郡中學(xué)聯(lián)考)若x2m2-3是-1x0,所以x2或x2或xa.因為BA,借助數(shù)軸可知a2,故選D.【解析】 “x2m2
18、-3”是“-1x4C.a1D.a18.(2018福州質(zhì)檢)已知命題p:x1,x2R,f(x2)-f(x1)(x2-x1)0,則 p是()A.x1,x2R,f(x2)-f(x1)(x2-x1)0B.x1,x2R,f(x2)-f(x1)(x2-x1)0C.x1,x2R,f(x2)-f(x1)(x2-x1)0D.x1,x2R,f(x2)-f(x1)(x2-x1)4是命題為真的充分不必要條件.C 【解析】 已知全稱命題p:x1,x2R,f(x2)-f(x1)(x2-x1)0,則 p:x1,x2R,f(x2)-f(x1)(x2-x1)0,故選C.知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升基 礎(chǔ) 訓(xùn) 練為真的是()A.p( q) B.( p)qC.pq D.( p)q10.已知集合A=x|1x5,C=x|-a2x,當(dāng)x=4時,42=24,命題q為假.所以p( q)為真,故選A.(-,-1 【解析】 因為CA=C,所以CA. 知 識 梳 理典 例 變 式基 礎(chǔ) 訓(xùn) 練能 力 提 升能 力 提 升1.設(shè)全集U=R,集合A=x|x1或x3,集合B=x|kxk+1,k2,且B(UA),則()A.k0B.k2C.0k2D.1k2C 【解析】 U=R,A=x|x1或x3,UA=x|1x3.B=x|kxk+1,k2,當(dāng)B(UA)=時,有k+11或k3(不合題意,舍去),如圖所示,k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手機補償協(xié)議書
- 稅務(wù)上調(diào)解協(xié)議書
- 苗木施工合同協(xié)議
- 蘋果購銷協(xié)議書
- 蘑菇棚子協(xié)議書
- 視頻制合同范本
- 認(rèn)祖歸宗協(xié)議書
- 設(shè)備技術(shù)協(xié)議書
- 設(shè)備購銷協(xié)議書
- 試管委托協(xié)議書
- 中考勵志講座課件
- 各部門環(huán)境因素識別評價表-塑膠公司
- 律所解除聘用協(xié)議書
- 海爾集團預(yù)算管理實踐分析
- 永輝超市存貨管理
- 10kV環(huán)網(wǎng)柜(箱)標(biāo)準(zhǔn)化設(shè)計方案(2023版)
- 余熱發(fā)電崗前培訓(xùn)
- 變壓器性能測試的實施方案
- 科技研發(fā)項目管理辦法
- 重癥胰腺炎個案護理
- (2025年標(biāo)準(zhǔn))無租用車協(xié)議書
評論
0/150
提交評論