第一章機械可靠性設計_第1頁
第一章機械可靠性設計_第2頁
第一章機械可靠性設計_第3頁
第一章機械可靠性設計_第4頁
第一章機械可靠性設計_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、機械可靠性設計田麗梅田麗梅生物與農用工程學院生物與農用工程學院田麗梅田麗梅工作單位工作單位吉林大學生物與農業(yè)工程學院吉林大學生物與農業(yè)工程學院吉林大學地面機械仿生技術教育部重點實驗室吉林大學地面機械仿生技術教育部重點實驗室聯系方式聯系方式聯系電話:聯系電話子郵件:電子郵件:辦公地點:吉林大學南嶺校區(qū)交通樓辦公地點:吉林大學南嶺校區(qū)交通樓707室室2主要參考教材主要參考教材1. 機械可靠性設計機械可靠性設計劉惟信編著劉惟信編著 清華大學出版社清華大學出版社 1996 2. 機械可靠性設計與分析機械可靠性設計與分析李良巧李良巧 顧唯明編著顧唯明編著 國防工業(yè)出版國防工業(yè)出

2、版社社 1998年年3.可靠性理論與工程應用可靠性理論與工程應用高社生高社生 張玲霞編著張玲霞編著 國防工業(yè)出版國防工業(yè)出版社社 2002年年3課程簡介課程簡介課程簡介學習目的學習目的基本要求基本要求機械可靠性設計以提高產品可靠性為目的、以概率論與數機械可靠性設計以提高產品可靠性為目的、以概率論與數理統(tǒng)計為基礎,綜合運用工程力學、機械工程學等方面知理統(tǒng)計為基礎,綜合運用工程力學、機械工程學等方面知識來研究機械工程的最佳設計問題識來研究機械工程的最佳設計問題介紹可靠性設計方法在機械設計中的應用,通過本課程介紹可靠性設計方法在機械設計中的應用,通過本課程的學習,可以使學生熟悉機械可靠性設計的步驟和

3、方法,的學習,可以使學生熟悉機械可靠性設計的步驟和方法,增強創(chuàng)新能力,更好地適應時代及今后工作的要求。增強創(chuàng)新能力,更好地適應時代及今后工作的要求。 重點掌握機械可靠性設計原理及可靠度計算、掌握機械靜重點掌握機械可靠性設計原理及可靠度計算、掌握機械靜強度、機械疲勞強度以及機械摩擦零件可靠性設計的強度、機械疲勞強度以及機械摩擦零件可靠性設計的基本內容和方法基本內容和方法主要內容主要內容第一章第一章 緒論緒論第二章第二章 可靠性的數學基礎可靠性的數學基礎第三章第三章 機械可靠性設計原理與可靠度計算機械可靠性設計原理與可靠度計算第四章第四章 機械靜強度可靠性設計機械靜強度可靠性設計第五章第五章 機械

4、疲勞強度可靠性設計機械疲勞強度可靠性設計第六章第六章 可靠性試驗可靠性試驗第七章第七章 機械零部件的可靠性設計機械零部件的可靠性設計 課程主要內容課程主要內容4第一章第一章 緒論緒論n1.1重視可靠性研究的原因重視可靠性研究的原因n一、可靠性問題的提出一、可靠性問題的提出n二、重視可靠性研究的原因二、重視可靠性研究的原因na、現代產品結構的復雜化和工作環(huán)境的嚴酷nb、可靠性涉及到巨大的經濟效益nc、可靠性影響到國家的安全與聲譽nd、可靠性是國防、軍工的需要ne、發(fā)達國家還把可靠性問題提高到節(jié)約能源的高度來認識n三、國內外機械可靠性的發(fā)展動態(tài)三、國內外機械可靠性的發(fā)展動態(tài)1.2可靠性定義可靠性定

5、義可靠性定義可靠性定義:1. 1966美國:“產品在規(guī)定的條件下和規(guī)定的時間內完成規(guī)定功能的能力”2. 1980美國:將可靠性定義分為任務可靠性和基本可靠性任務可靠性:產品在規(guī)定的任務剖面內完成規(guī)定功能的能力基本可靠性:產品在規(guī)定條件下,無故障的持續(xù)時間和概率1.2可靠性定義可靠性定義n可靠度定義:可靠度定義:產品在規(guī)定的條件下,在規(guī)定的時間內完成規(guī)定功能的概率。n可靠度定義的五要素可靠度定義的五要素對象、使用條件、規(guī)定時間、規(guī)定功能、概率1.2可靠性定義可靠性定義n可靠性的研究內容:可靠性的研究內容:n可靠性數學可靠性數學:是重要的基礎理論n可靠性物理可靠性物理:研究失效的物理原因與數學物理

6、模型及檢測方法與糾正措施的一門可靠性理論,它使可靠性工程從數理統(tǒng)計方法發(fā)展到以理化分析為基礎的失效分析方法,它是從本質上、從機理方面探討產品的不可靠因素,從而為研制、生產高可靠性產品提供科學依據。n可靠性工程:可靠性工程:零部件的可靠性分析、可靠性設計及系統(tǒng)的可靠性工程等。1.3可靠性的數學指標及其函數可靠性的數學指標及其函數n常用的可靠性尺度有:可靠度、失效率、平均壽命、壽命方差和可靠度、失效率、平均壽命、壽命方差和壽命標準差、可靠壽命與中位壽命及特征壽命、有效壽命與更換壽命標準差、可靠壽命與中位壽命及特征壽命、有效壽命與更換壽命等可靠性尺度、維修度、平均修理時間、修復率、有效度和壽命等可靠

7、性尺度、維修度、平均修理時間、修復率、有效度和重要度重要度等??煽慷扰c不可靠度可靠度與不可靠度可靠度:產品在規(guī)定的條件下和規(guī)定的時間內,完成規(guī)定功能的概率,通常用R(t)表示??煽慷确植己瘮担篟(t),取值范圍是不可靠度函數(失效概率函數):F(t),它與可靠度呈互補關系1R(t)01)()(tFtR1.3可靠性的數學指標及其函數可靠性的數學指標及其函數n失效率t:工作到t時刻尚未失效的產品,在該時刻t后的單位時間內發(fā)生失效的概率,也稱為失效率函數。n失效率的單位:通常用時間的倒數表示。但目前具有高的可靠性產品來說,就需要采用更小的單位來作為失效率的基本單位,因此失效率的單位用菲特(Fit)來

8、定義,)()(tRtRthh39610/10/101菲特1.3可靠性的數學指標及其函數可靠性的數學指標及其函數失效率曲線1.3可靠性的數學指標及其函數可靠性的數學指標及其函數n平均壽命:平均壽命:對于不可修復產品,平均壽命就是指該產品從開始使用到失效前的工作時間(或工作次數)的平均值,記為:n對于可修復的產品,其壽命是指相鄰兩次故障間的工作時間,因此為平均無故障工作時間或稱為平均故障間隔,記為NiitNMTTF11NinjijNiiitnMTBF11111.3可靠性的數學指標及其函數可靠性的數學指標及其函數n維修度維修度M(t) 維修度是指在維修條件下使用的產品,在規(guī)定時間內按照規(guī)定的程序和方

9、法進行維修時,保持或恢復到能完成規(guī)定功能狀態(tài)的概率,維修度的觀測值為:式中:n 投入維修的產品數 ns(t) t時刻已維修的產品數n有效度有效度A(t):可靠度與維修度合起來的尺度:可靠度與維修度合起來的尺度瞬時有效度:指產品在某時刻具有或保持規(guī)定功能的概率平均有效度:在某個規(guī)定時間區(qū)間內有效度的平均值穩(wěn)態(tài)有效度:當時間趨于無限時,瞬時有效度的極限值ntntMs)()(1.4機械可靠性特點機械可靠性特點一、特點一、特點1、與電子產品相比,電子產品的失效模式比較簡單,而機械產品的失效模式比較復雜2、電子產品發(fā)生故障是由于偶然因素造成的,而機械產品的故障原因主要是由疲勞、老化、磨損、腐蝕等,因而主

10、要是耗損型故障3、電子產品的應力易于預計而機械產品的應力難于準確預計4、機械產品的可靠性要考慮載荷、幾何尺寸、材料性能、數據等因素的分散性和隨機性,涉及到很多學科,如力學、摩擦學、電化學等,這無疑給研究機械可靠性帶來很大的困難1.4機械可靠性特點機械可靠性特點二、機械概率可靠性設計與傳統(tǒng)安全系數法機械設計的關系二、機械概率可靠性設計與傳統(tǒng)安全系數法機械設計的關系安全系數法的基本思想:它認為零件的強度S和應力都是單值的如圖11(a)所示。概率機械設計方法則認為零件的應力、強度以及其它的設計參數如裁荷、幾何尺寸和物理量等部是多值的,即呈分布狀態(tài),如圖11b、c所示。 圖11單值的和多值的應力強度分

11、布1.4機械可靠性特點機械可靠性特點n機械可靠性、傳統(tǒng)機械設計的區(qū)別機械可靠性、傳統(tǒng)機械設計的區(qū)別機械概率可靠性設計比傳統(tǒng)機械設計更具有的科學性1.4機械可靠性特點機械可靠性特點n機械可靠性、傳統(tǒng)機械設計的區(qū)別機械可靠性、傳統(tǒng)機械設計的區(qū)別當均值不變,改變標準差對可靠度的影響曲線1原來的分保,曲線2標準差之一減小了,曲線3兩個標準差都減小了1.4機械可靠性特點機械可靠性特點表表1 在規(guī)定的應力分布和強度分布下的安全系數及相應的可靠度在規(guī)定的應力分布和強度分布下的安全系數及相應的可靠度序號 強度均值 應力均值 強度標準差 應力標準差 安全系數 可靠度 1172.469.06.910.32.50.

12、91662172.469.034.520.72.50.99493172.469.055.220.72.50.95994172.469.034.551.72.50.95255172.469.055.251.72.50.91466172.469.06941.42.50.89977172.469.0172.4175.92.50.66288344.8137.9172.4175.92.50.7995986.234.534.520.72.50.901510344.869.06.910.35111172.434.5172.4175.950.712312172.4138.06.910.31.250.99731

13、369.069.06.910.31.00.5SsSsnfRn機械可靠性、傳統(tǒng)機械設計的區(qū)別機械可靠性、傳統(tǒng)機械設計的區(qū)別n機械可靠性、傳統(tǒng)機械設計的區(qū)別機械可靠性、傳統(tǒng)機械設計的區(qū)別1)以概率論和數理統(tǒng)計為理論基礎的可靠性沒計方法比傳統(tǒng)的安全系數法要合理得多。2)可靠性設計能得到恰如其分的設計而安全系數法則往往為了保險而導致過分保守的設汁。由此幫來的后果是,可靠性設計能得到較小的零件尺寸、體積和重量,從而節(jié)約了原材料、加工時間和人力,帶來了較大的經濟效益。 3)可靠性設計使零件有可以預測的壽命及失效概率,而安全系數法則不能。4)可靠性設計方法比較敏感。1.4機械可靠性特點機械可靠性特點1.5機

14、械可靠性設計概論機械可靠性設計概論n1、定義、定義 機械可靠性設計是近期發(fā)展起來的并得到推廣應用的一門現代設計理論和方法。它是以提高產品的可靠性為目的,以概率論與數理統(tǒng)計理論為基礎,綜合運用數學、物理、工程力學、機械工程學、人機工程學、系統(tǒng)工程學、運籌學等多方面的知識來研究機械工程的最佳設計問題。n2、機械可靠性設計與可靠性計劃、機械可靠性設計與可靠性計劃 (a)在設計開始時應制定詳細的可靠性技術要求,要把對可靠性和 維修性的要求具體化; (b)在設計中為了提高系統(tǒng)的可靠度,應首先考慮簡化結構、減少 零件數,提高零、部件的可靠度,以及降額(使產品工作時的 功率、速度等性能指標低于其限額值)使用

15、等措施。 1.5機械可靠性設計概論機械可靠性設計概論n3、機械可靠性設計的特點、機械可靠性設計的特點A、以應力和強度為隨機變量做為出發(fā)點B、應用概率和統(tǒng)計方法進行分析、求解C、能定量的回答產品的失效概率和可靠度D、有多種可靠性指標供選擇E、強調設計對產品可靠性的主導作用F、必須考慮環(huán)境的影響G、必須考慮維修性H、從整體的、系統(tǒng)的觀點出發(fā)i、承認在設計期間及其以后都需要可靠性增長1.5機械可靠性設計概論機械可靠性設計概論n4、機械可靠性設計的主要內容、機械可靠性設計的主要內容A、研究產品的故障物理和故障模型B、確定產品的可靠性指標及其等級C、合理分配產品的可靠性指標值D、以規(guī)定的可靠性指標值為依

16、據對零件進行可靠性設計1.5機械可靠性設計概論機械可靠性設計概論n4、機械可靠性設計的方法與步驟、機械可靠性設計的方法與步驟可靠性設計方法可以保證把規(guī)定的可靠性指標值直接設計到零件中去,從而設計到產品中去。可靠性設計可靠性設計方法方法概率設計法概率設計法失效樹失效樹分析法分析法(FTA)失效模式、失效模式、影響及致命影響及致命度分析法度分析法(FMECA)第二章第二章 可靠性的數學基礎可靠性的數學基礎n2-1 概率和統(tǒng)計的概念概率和統(tǒng)計的概念n1.隨機事件:隨機事件:在個別試驗或觀察中呈現不確定性,而在大量的重復試驗或觀察下,其結果卻呈現某種規(guī)律性,這種現象稱為隨機現象,或稱為隨機事件。n2.

17、母體:母體:某一統(tǒng)計分析工作中的研究對象的全體或被調查的全體,也稱總體。n3.樣本:樣本:從母體中抽出的作為觀測對象的n個元素(也稱為個體),叫做母體的樣本或樣品、子樣,這時n叫做樣本的容量。n4.樣本空間:樣本空間:由隨機試驗(記為E)的所有基本事件組成的集合,叫做該隨機試驗的樣本空間。第二章第二章 可靠性的數學基礎可靠性的數學基礎2-2 概率的運算法則概率的運算法則n1.隨機概率的和與積:隨機概率的和與積:隨機事件A與B的和是一事件,它表示事件A與B中至少有一事件發(fā)生,記作A十B。隨機事件A與B的積是一事件,它表示事件A與B都發(fā)生,記作AB。n2.概率加法定理概率加法定理定理1互不相容兩事

18、件的和的概率,等于這兩事件的概率的和。P(A十B)P(A)十P(B)定理2互不相容有限個事件的和的概率,等于這些事件的概率的和。P(A1十A2十十An)P(A1)+(A2)十十P(An)第二章第二章 可靠性的數學基礎可靠性的數學基礎n3.條件概率條件概率如果我們在事件B已經發(fā)生的條件下計算事件A的概率,則這種概率叫做事件A在事件B已發(fā)生的條件下的條件概率,記作P(AB)。例2-1,兩臺車床加工同一種機械零件如下表:合格品數合格品數次品數次品數總計總計第一臺車床加工的零件數第一臺車床加工的零件數35540第二臺車床加工的零件數第二臺車床加工的零件數501060總計總計8515100從這100個零

19、件中任取一個零件,則取得合格品(設為事件A)的概率:10085)(AP如果已知取出的零件是第一臺車床加工的(設為事件B),則取得合格品事件A)的概率是條件概率:4035)(BAP第二章第二章 可靠性的數學基礎可靠性的數學基礎n4.概率乘法定理概率乘法定理定理1兩獨立事件的積的概率等于這兩事件的概率的乘積P(AB)P(A)P(B)定理2有限個獨立事件的積的概率等于這些事件的概率的乘積。P(A1A2An)=P(A1)P(A2)P(An)定理3.當事件A,B不是相互獨立的事件時,兩事件的積的概率等于其中一事件的概率與另一事件在前一事件已發(fā)生的條件下的條件概率的乘積 P(AB)P(A)P(B|A)P(

20、B)P(A|B)定理4有限個事件的積的概率等于這些事件的概率的乘積,其中每一事件的概率是在它前面的一切事件都巳發(fā)生的條件下的條件概率P(A1A2An)=P(A1)P(A2|A1)P(A3|A1A2)P(An|A1A2An-1)第二章第二章 可靠性的數學基礎可靠性的數學基礎例22 一批零件共100個,次品率為10。每次從其中任取一個零件,取出的零件不再放回去,求第三次才取得合格品的概率。二項分布的分布函數為:其中 0p1,p+q=1,記為XB(n,p)或X B(n,k,p)二項的數字特征:E(X)=np,D(X)=np(1-p)第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可

21、靠性常用分布2.3.1二項分布二項分布1、定義、定義:若以X表示在n重獨立試驗中事件A發(fā)生的次數,則X是一個隨機變量,它的可能取值為0,1,2,k,n(共n+1種),這時X所服從的概率分布稱為二項分布,其定義如下:kkkknknqpCkxPxF0)()(11)1 (nnppCknkknppC)1 (X01knP=X=k(1-p)npn第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2、二項分布的應用:、二項分布的應用:二項分布在可靠性工程中,是用來計算復雜冗余系統(tǒng)可靠度的一種最簡單的分布。冗余系統(tǒng)的可靠度不僅依賴于各個元件的可靠度和冗余結構中元件的數量,而且也依

22、賴于系統(tǒng)成功所需的元件的數量。如果要系統(tǒng)中的全部元件工作正常時系統(tǒng)工作才正常,則二項級數中的第一項便是系統(tǒng)成功的概率。這種情況實際上沒有冗余度。如容許一個失效,那末,只要不發(fā)生失效或只有一個失效,系統(tǒng)便是成功的。因此,系統(tǒng)的可靠度為級數的前兩項之和。如容許兩個失效,則前三項之和便為系統(tǒng)的可靠度。一般說來,若容許k個失效,則系統(tǒng)成功的概率,即系統(tǒng)的可靠度便為前k十1項之和23: 某液壓系統(tǒng),其中有4只型號和規(guī)格相同的單向閥,若在規(guī)定時間t內任何一只停止工作的概率為p失效概率F(t)=0.06,求規(guī)定時間內恰有兩只單向閥停止工作的概率及不超過兩只停止工作的概率。第二章第二章 可靠性的數學基礎可靠性

23、的數學基礎2-3可靠性常用分布可靠性常用分布2.3.2泊松分布泊松分布1、定義:、定義:設隨機變量Xn(n1,2,)服從二項分布,其分布率是式中Pn是與n有關的數,又設 是常數,則有,.1 , 0,)1 (kppCkXPknnknkr0nnp,.),.,1 , 0(!)1 (limlimnkkeppCkXpkknnknknnnn泊松分布的數字特征:E(X)=np D(X)=np第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2、泊松分布的應用:、泊松分布的應用:泊松分布在可靠性工程中,是用來計算后備冗余系統(tǒng)的可靠度。泊松分布的定義式可寫成如下方式:1.!22ee

24、e將用t表示這里為失效率, t為時間,乘積t為在時間t內發(fā)生的平均失效數,為使系統(tǒng)失效率不變,必須使工作元件數不變。如有一元件失效,必須修復,使它恢復到原來的狀態(tài),或者用相同的元件替換。系統(tǒng)的這種工作方法叫做后備冗余法。第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2.3.3 指數分布:指數分布:1、定義及應用、定義及應用、指數分布是可靠性工程中最常用的分布類型之一,當失效率等于常數時,可靠度函數R(t)、失效分布函數F(t)、失效密度函數f(t)都是指數分布tttedttdFtfetFetR)()(1)()(圖圖21 R(t)曲線:曲線:a大,大,b中等,中

25、等,c小小機械系統(tǒng)或電子設備大都是在失效率比較穩(wěn)定的那段時間里使用,因此指數分布常用來反映這類產品的可靠度。指數分布的計算也較簡單, 的值可由附錄中的附表查得,使用方便,所以指數分布在可靠性工程中應用很廣。te第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2、在失效率為常數的串聯系統(tǒng)中,指數分布的平均壽命等于失效率的倒數。24某系統(tǒng)由三個子系統(tǒng)組成。若各子系統(tǒng)的平均故障間隔時間分別為200、80、300 h,求整個系統(tǒng)的平均故障間隔時間是多少?tetR)(第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2.3.4正態(tài)分布正態(tài)分布

26、1、定義:、定義:設連續(xù)隨機變量的分布密度,即密度函數f(x)為xexfx,21)(2)(21其中及0都是常數,這種分布叫做正態(tài)分布(高斯分布)。其中和是正態(tài)分布參數,稱為數學期望(均值),稱為標準偏差(均方差), 均值是隨機變量各個取值中心傾向的代表值,由均方差或方差 的大小,可以推斷隨機變量分布的分散程度。2第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2、正態(tài)分布概率密度函數曲線、正態(tài)分布概率密度函數曲線的性質:的性質:0)(xfx時,圖圖22正態(tài)分布的概率密度函數曲線正態(tài)分布的概率密度函數曲線(1)曲線yf(x)對于軸線x對稱(2)當x時,f(x)有最

27、大值(3)當(4)曲線f(x)在 處有拐點(5)曲線yf(X)是以x軸為漸近線,且 f(x)應滿足(6)當給定值而改變值時,曲線以y=f(x)僅沿 著x軸平移,但圖形不變(7)當給定值而改變值時,圖形的對稱軸不變,而圖形本身改變21x1)(xf第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布2、正態(tài)分布概率密度函數曲線的性質:、正態(tài)分布概率密度函數曲線的性質:圖圖23正態(tài)曲線正態(tài)曲線相同,相同,值不同值不同圖圖24 正態(tài)曲線正態(tài)曲線(相同,相同,值不同值不同)第二章第二章 可靠性的數學基礎可靠性的數學基礎2-3可靠性常用分布可靠性常用分布3、正態(tài)分布的數字特征:、正態(tài)分布的數字特征: 2)()(XDXE4、根據正態(tài)概率密度函數曲線的性質,顯然有:、根據正態(tài)概率密度函數曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論