版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
2、要求的。1已知集合,則( )ABCD2如圖所示,矩形的對角線相交于點(diǎn),為的中點(diǎn),若,則等于( )ABCD3數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,則實(shí)數(shù)的最大值為()ABCD4某校在高一年級進(jìn)行了數(shù)學(xué)競賽(總分100分),下表為高一一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運(yùn)行相應(yīng)的程序,輸出,的值,則( )A6B8C10D125函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖
3、像為( )ABCD6如圖,在中,點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),則( )ABCD7設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,則公比( )AB4CD28復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限9運(yùn)行如圖程序,則輸出的S的值為() A0B1C2018D201710已知是邊長為的正三角形,若,則ABCD11已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則( )ABCD12已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖是某幾何體的三視圖,俯視圖中
4、圓的兩條半徑長為2且互相垂直,則該幾何體的體積為_.14若x,y滿足,且y1,則3x+y的最大值_15已知點(diǎn)P是直線y=x+1上的動點(diǎn),點(diǎn)Q是拋物線y=x2上的動點(diǎn).設(shè)點(diǎn)M為線段PQ的中點(diǎn),O為原點(diǎn),則16在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是直線:上位于第一象限內(nèi)的一點(diǎn)已知以為直徑的圓被直線所截得的弦長為,則點(diǎn)的坐標(biāo)_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面四邊形(圖)中,與均為直角三角形且有公共斜邊,設(shè),將沿折起,構(gòu)成如圖所示的三棱錐,且使=. (1)求證:平面平面;(2)求二面角的余弦值.18(12分)設(shè)為拋物線的焦點(diǎn),為拋物線上的兩個(gè)動點(diǎn),為坐標(biāo)
5、原點(diǎn).()若點(diǎn)在線段上,求的最小值;()當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.19(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn) (1)求證:平面; (2)求二面角的正切值20(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.21(12分)如圖所示,四棱柱中,底面為梯形,.(1)求證:;(2)若平面平面,求二面角的余弦值.22(10分)為迎接2022年冬奧會,北京市組織中學(xué)生開展冰雪運(yùn)動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進(jìn)行了考核記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)
6、的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖:()從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;()從圖中考核成績滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;()記表示學(xué)生的考核成績在區(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效請根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動是否有效,并說明理由參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】由題意和交集的運(yùn)算直接求出.【詳解】 集合,.故選:C.【點(diǎn)睛】本題考查了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處
7、是實(shí)心圓還是空心圓.2A【解析】由平面向量基本定理,化簡得,所以,即可求解,得到答案【詳解】由平面向量基本定理,化簡,所以,即,故選A【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題3D【解析】利用等差數(shù)列通項(xiàng)公式推導(dǎo)出,由d1,2,能求出實(shí)數(shù)取最大值【詳解】數(shù)列an是等差數(shù)列,a11,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得,d1,2,2是減函數(shù),d1時(shí),實(shí)數(shù)取最大值為故選D【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是
8、基礎(chǔ)題4D【解析】根據(jù)程序框圖判斷出的意義,由此求得的值,進(jìn)而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,所以.故選:D【點(diǎn)睛】本小題考查利用程序框圖計(jì)算統(tǒng)計(jì)量等基礎(chǔ)知識;考查運(yùn)算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.5D【解析】 由題意得,函數(shù)點(diǎn)定義域?yàn)榍遥远x域關(guān)于原點(diǎn)對稱, 且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱, 故選D.6B【解析】,將,代入化簡即可.【詳解】.故選:B.【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算、數(shù)乘運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道中檔題.7D【解析】由得,又,兩式相除即可解出【詳解
9、】解:由得,又,或,又正項(xiàng)等比數(shù)列得,故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題8A【解析】試題分析:由題意可得:. 共軛復(fù)數(shù)為,故選A.考點(diǎn):1.復(fù)數(shù)的除法運(yùn)算;2.以及復(fù)平面上的點(diǎn)與復(fù)數(shù)的關(guān)系9D【解析】依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán)輸出1選D10A【解析】由可得,因?yàn)槭沁呴L為的正三角形,所以,故選A11A【解析】畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,又,由圖可得與關(guān)于對稱,
10、故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12A【解析】利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,則的漸近線方程為故選A【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。1320【解析】由三視圖知該幾何體是一個(gè)圓柱與一個(gè)半球的四分之三的組合,利用球體體積公式、圓柱體積公式計(jì)算即可.【詳解】由三視圖知,該幾何體是由一個(gè)半徑為2的半球的四分之三和一個(gè)底面半徑2
11、、高為4的圓柱組合而成,其體積為.故答案為:20.【點(diǎn)睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運(yùn)算能力,是一道容易題.145.【解析】由約束條件作出可行域,令z3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】由題意作出可行域如圖陰影部分所示. 設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題153【解析】過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時(shí)距離最小,計(jì)算得到答案.【詳解】如圖所示:過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中
12、間直線上,y=x2,則y=2x=1,x=1點(diǎn)M為線段PQ的中點(diǎn),故M在直線y=x+38時(shí)距離最小,故故答案為:32【點(diǎn)睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.16【解析】依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點(diǎn)間的距離公式即可求出,進(jìn)而得出點(diǎn)坐標(biāo).【詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因?yàn)闉閳A的直徑,則所對的圓周角,則, 則為點(diǎn)到直線:的距離.所以,則.又因?yàn)辄c(diǎn)在直線:上,設(shè),則.解得,則.故答案為: 【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,是基礎(chǔ)題.三、解答
13、題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)【解析】(1)取AB的中點(diǎn)O,連接,證得,從而證得CO平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,在Rt和RtADB中,AB=2,則=DO=1,又CD= ,所以,即OD,又AB,且ABOD=O,平面ABD,所以平面ABD,又CO平面,所以平面平面DAB (2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(
14、0,-1,0),B(0,1,0),C(0,0,1), ,所以,設(shè)平面的法向量為=(),則, 即,代入坐標(biāo)得,令,得,所以,設(shè)平面的法向量為=(), 則, 即, 代入坐標(biāo)得, 令,得,所以,所以,所以二面角A-CD-B的余弦值為.【點(diǎn)睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18()()【解析】(1)由拋物線的性質(zhì),當(dāng)軸時(shí),最小;(2)設(shè)點(diǎn),分別代入拋物線方
15、程和得到三個(gè)方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,根據(jù)拋物線的性質(zhì),當(dāng)軸時(shí),最小,最小值為,即為4.(2)由題意,設(shè)點(diǎn),其中,.則,因?yàn)?,所?由,得,由,且,得,解不等式,得點(diǎn)縱坐標(biāo)的范圍為.【點(diǎn)睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運(yùn)算能力,此類問題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等,易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解.19 (1)見證明;(2) 【解析】(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而, 得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于
16、,可證是二面角的平面角,再在中求解即得【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且, 又且,且,EFGA是平行四邊形,則, 又面,面, 面; (2)解:取AD中點(diǎn)O,連結(jié)PO, 面面,為正三角形,面,且, 連交于,可得,則,即 連,又,可得平面,則, 即是二面角的平面角, 在中,即二面角的正切值為【點(diǎn)睛】本題考查線面平行證明,考查求二面角求二面角的步驟是一作二證三計(jì)算即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算20(1)當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)證明見解析【解
17、析】(1)對求導(dǎo),分,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)椋?,?dāng)時(shí),令,得,令,得;當(dāng)時(shí),則,令,得,或,令,得;當(dāng)時(shí),當(dāng)時(shí),則,令,得;綜上所述,當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時(shí),設(shè),又因?yàn)?,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因?yàn)椋?,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的
18、應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.21(1)證明見解析(2)【解析】(1)取中點(diǎn)為,連接,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),為,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,如下圖所示:因?yàn)?,所以,故為等邊三角形,則.連接,因?yàn)椋詾榈冗吶切?,則.又,所以平面.因?yàn)槠矫?,所?(2)由(1)知,因?yàn)槠矫嫫矫?,平面,所以平面,以為原點(diǎn),為,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,則,.設(shè)平面的法向量,則即令,則,故.設(shè)平面的法向量,則則令,則,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.22()()()見解析【解析】()根據(jù)莖葉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年數(shù)據(jù)分析與應(yīng)用行業(yè)精英考試卷
- 2026年高級經(jīng)濟(jì)師考試宏觀經(jīng)濟(jì)知識精講習(xí)題
- 求職職業(yè)規(guī)劃模板
- 天保人員培訓(xùn)
- 2026年廣東農(nóng)工商職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試模擬試題及答案詳細(xì)解析
- 2026年上海中僑職業(yè)技術(shù)大學(xué)單招綜合素質(zhì)考試備考試題含詳細(xì)答案解析
- 2026年九江理工職業(yè)學(xué)院單招職業(yè)技能考試模擬試題含詳細(xì)答案解析
- 2026年河南工業(yè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試參考題庫含詳細(xì)答案解析
- 2026年新疆天山職業(yè)技術(shù)大學(xué)單招職業(yè)技能考試模擬試題含詳細(xì)答案解析
- 外科門診課件
- 糖皮質(zhì)激素在兒科疾病中的合理應(yīng)用3
- 無人機(jī)制造裝配工藝智能優(yōu)化
- GB/T 1965-2023多孔陶瓷室溫彎曲強(qiáng)度試驗(yàn)方法
- 六年級語文非連續(xù)性文本專項(xiàng)訓(xùn)練
- 體育單招核心1700單詞
- 梨樹溝礦區(qū)金礦2022年度礦山地質(zhì)環(huán)境治理計(jì)劃書
- 師德規(guī)范關(guān)愛學(xué)生
- 太陽能光伏發(fā)電裝置的開發(fā)與推廣商業(yè)計(jì)劃書
- 海水淡化用閥門
- GB/T 36377-2018計(jì)量器具識別編碼
- GB/T 26332.3-2015光學(xué)和光子學(xué)光學(xué)薄膜第3部分:環(huán)境適應(yīng)性
評論
0/150
提交評論