2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)_第1頁
2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)_第2頁
2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)_第3頁
2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)_第4頁
2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)_第5頁
免費預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022年山西省晉城市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(10題)1.A.{1,0}B.{1,2}C.{1}D.{-1,1,0}

2.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是()A.y=1/xB.y=ex

C.y=-x2+1D.y=lgx

3.若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)

4.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則為()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

5.設(shè)Sn為等差數(shù)列{an}的前n項和,S8=4a3,a7=-2,則a9等于()A.-6B.-4C.-2D.2

6.設(shè)a,b為實數(shù),則a2=b2的充要條件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

7.函數(shù)y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

8.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,則tanθ的值為()A.2B.-2C.1/2D.-1/2

9.正方體棱長為3,面對角線長為()A.

B.2

C.3

D.4

10.己知向量a=(3,-2),b=(-1,1),則3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

二、填空題(10題)11.1+3+5+…+(2n-b)=_____.

12.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點P到直線b的距離為_____.

13.

14.

15.

16.右圖是一個算法流程圖.若輸入x的值為1/16,則輸出y的值是____.

17.

18.

19.已知點A(5,-3)B(1,5),則點P的坐標是_____.

20.

三、計算題(5題)21.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

22.有語文書3本,數(shù)學(xué)書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

23.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.

24.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

25.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

四、證明題(5題)26.

27.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.

28.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.

29.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2

+(y+1)2

=8.

30.△ABC的三邊分別為a,b,c,為且,求證∠C=

五、簡答題(5題)31.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

32.已知的值

33.已知拋物線的焦點到準線L的距離為2。(1)求拋物線的方程及焦點下的坐標。(2)過點P(4,0)的直線交拋物線AB兩點,求的值。

34.解不等式組

35.已知是等差數(shù)列的前n項和,若,.求公差d.

六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.

37.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標準方程.

38.

(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標軸相切的圓的標準方程.

39.

40.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

參考答案

1.A

2.C函數(shù)的奇偶性,單調(diào)性.根據(jù)題意逐-驗證,可知y=-x2+1是偶函數(shù)且在(0,+∞)上為減函數(shù).

3.C直線與圓的公共點.圓(x-a)2+y2=2的圓心C(a,0)到x-y+1=0

4.C

5.A等差數(shù)列的性質(zhì).由S8=4a3知:S8=a1+a2+a3+...+a8=4(a1+a8)=4(a3+a6)=4a3.a6=0,所以a7-a6=d=-2.所以a9=a7+2d=-2-4=-6.

6.D

7.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期為6π。

8.A平面向量的線性運算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.

9.C面對角線的判斷.面對角線長為

10.D

11.n2,

12.

,以直線b和A作平面,作P在該平面上的垂點D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

13.{x|0<x<3}

14.

15.(-7,±2)

16.-2算法流程圖的運算.初始值x=1/16不滿足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

17.π/4

18.√2

19.(2,3),設(shè)P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).

20.①③④

21.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

22.

23.

24.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

25.解:設(shè)首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

26.

27.

28.

∴PD//平面ACE.

29.

30.

31.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,

32.

∴∴則

33.(1)拋物線焦點F(,0),準線L:x=-,∴焦點到準線的距離p=2∴拋物線的方程為y2=4x,焦點為F(1,0)(2)直線AB與x軸不平行,故可設(shè)它的方程為x=my+4,得y2-4m-16=0由設(shè)A(x1,x2),B(y1,y2),則y1y2=-16∴

34.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

35.根據(jù)等差數(shù)列前n項和公式得解得:d=4

36.

37.解:(1)直線l過A(0,2),B(-2,-2)兩點,根據(jù)斜率公式可得斜率因此直線l的方程為y-2=2x即2x-y+2=0⑵由⑴知,直線l的方程為2x-y+2=0,因此直線l與x軸的交點為(-1,0).又直線l過橢圓C的左焦點,故橢圓C的左焦點為(-1,0).設(shè)橢圓C的焦距為2c,則有c=1因為點A(0,2)在橢圓C:上所以b=2根據(jù)a2=b2+c2,有a=故橢圓C的標準方程為

38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論