版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第七章章系系統(tǒng)統(tǒng)評價價方法法第第一節(jié)節(jié)系系統(tǒng)統(tǒng)評價價概述述一、系系統(tǒng)評評價的的重要要性二二、、系統(tǒng)統(tǒng)評價價的原原則1保保持持評價價的客客觀性性2保保證方方案的的可比比性3正正確確合理理地制制定評評價指指標(biāo)體體系4評評價價指標(biāo)標(biāo)與國國家的的方針針、政政策、、法令令相一一致三、系系統(tǒng)評評價的的步驟驟1說說明各各評價價方案案2確確定由由分項項和大大類指指標(biāo)組組成的的指標(biāo)標(biāo)體系系或評評價指指標(biāo)系系統(tǒng)圖圖3確確定各各大類類及單單項指指標(biāo)的的權(quán)重重4進(jìn)進(jìn)行單單項評評價,,查明明各方方案對對各單單項指指標(biāo)的的實現(xiàn)現(xiàn)程度度5進(jìn)進(jìn)行單單項評評價指指標(biāo)的的綜合合,得得出大大類評評價指指標(biāo)的的價值值6進(jìn)進(jìn)行綜綜合評評價,,綜合合各大大類評評價指指標(biāo)的的價值值和總總價值值四、評評價指指標(biāo)體體系的的制定定1政政策性性指標(biāo)標(biāo)2技技術(shù)性性指標(biāo)標(biāo)3經(jīng)經(jīng)濟(jì)性性指標(biāo)標(biāo)4社社會會性指指標(biāo)5資資源源性指指標(biāo)6時時間間性指指標(biāo)第二節(jié)節(jié)系系統(tǒng)評評價的的方法法一、關(guān)關(guān)聯(lián)矩矩陣法法((一))基本本思想想:將將評評價對對象((評價價方案案)中中的每每個評評價因因素(評價價項目目)的的評價價值按按該因因素((項目目)在在系統(tǒng)統(tǒng)功能能中所所占的的重要要程度度給以以權(quán)數(shù)數(shù),從從而得得出評評價對對象的的綜合合結(jié)果果。應(yīng)應(yīng)用用前提提:被被評價價的多多個可可行方方案相相互之之間無無交叉叉影響響(相相互獨(dú)獨(dú)立或或互斥斥方案案)。。設(shè):A1A2……Am是m個個可行行方案案;X1X2……Xn是n個評價價項目;W1W2……Wn是n個評價價項目的權(quán)權(quán)重;Vi1Vi2……Vin是第i個可可行方案Ai(i=1,2,………m)的關(guān)關(guān)于第Xj個評價項目目的評價值值向量(j=1,2,……n)。則則可寫出關(guān)關(guān)聯(lián)矩陣表表。(表7—1)(二)關(guān)聯(lián)聯(lián)矩陣法步步驟:1確定各各評價項目目的權(quán)重;;
2給給出評價尺尺度;3確定各各可行評價價方案的評評價項目得得分;4對各可可行方案進(jìn)進(jìn)行綜合評評價;5確定最最優(yōu)方案。。
(三))確定權(quán)重重的方法1逐逐對比較法法(兩兩比比較法)例例:2古林法法(A.J.Klee法)例例二、層次分分析法(AHP)((一)基基本思想::通通過分析析復(fù)雜系統(tǒng)統(tǒng)所包含的的因素及其其相互關(guān)系系,將問題題分解成不不同的要素素,并將這這些要素歸歸并為不同同的層次,,從而形成成一個多層層次的分析析結(jié)構(gòu)模型型。在每一一層次可按按某一規(guī)定定準(zhǔn)則對該該層要素進(jìn)進(jìn)行逐對比比較,寫成成矩陣形式式,即形成成判斷矩陣陣。通過計計算判斷矩矩陣的最大大特征根及及其相應(yīng)的的特征向量量,得出該該層要素對對于該準(zhǔn)則則的權(quán)重。。在此基礎(chǔ)礎(chǔ)上進(jìn)而算算出各層次次要素對于于總體目標(biāo)標(biāo)的組合權(quán)權(quán)重,從而而得出不同同設(shè)想方案案的權(quán)值,,為選擇最最優(yōu)方案提提供依據(jù)。。(二)特點(diǎn)點(diǎn):定定性性分析與定定量分析相相結(jié)合,整整理并綜合合人們的主主觀判斷,,將分析人人員的思維維過程系統(tǒng)統(tǒng)化和模型型化,定量量數(shù)據(jù)較少少,計算簡簡單,分析析思路清晰晰。
(三三)適用::多準(zhǔn)則、、多目標(biāo)的的復(fù)雜系統(tǒng)統(tǒng)的評價和和決策分析析。(四)步驟驟:1明確確問題2建建立層次分分析結(jié)構(gòu)模模型3建立立判斷矩陣陣
4層層次單單排序((計算算判斷矩陣陣的特征向向量)5一一致性檢驗驗((計算最大大特征根及及隨機(jī)一致致性比率))
6層層次總總排序((綜合合評價)1明確確問題2建立立層次分析析模型(見見圖)最最高層:目目標(biāo)層G((若多目標(biāo)標(biāo),可增加加一分目標(biāo)標(biāo)層,k個目標(biāo)可用用g1g2……gk表示)中中間層:準(zhǔn)準(zhǔn)則層C((m個準(zhǔn)則可用用c1c2……cm表示)最最底層:方方案層(或或措施層)P(n個個方案可用用p1p2……pn表示)例例7——2某廠廠擬增添一一臺新設(shè)備備,希望功功能好、價價格低、易易維修?,F(xiàn)現(xiàn)有三種設(shè)設(shè)備可供選選擇,通過過分析,建建立層次結(jié)結(jié)構(gòu)模型。。例7—3對市市政交通問問題之例,,可建立如如下的層次次分析結(jié)構(gòu)構(gòu)模型。((圖7—2)
例7—4對對人口口控制系統(tǒng)統(tǒng),可建立立如下的層層次分析結(jié)結(jié)構(gòu)模型。。((圖7——3)3建立立判斷矩陣陣判判斷矩矩陣表示針針對上層次次某元素,,本層次與與之有關(guān)元元素之間相相對重要性性的比較。。判判斷矩矩陣的形式式4層次次單排序計計算判斷斷矩陣的常常用方法::和積法,,方根法。。(1)和積積法
1°°將判斷矩矩陣的每一一列元素做做歸一化處處理(i,j=1,2……n)2°將歸歸一化的判判斷矩陣按按行相加::(i,=1,2…n)3°對對向量歸歸一化化(i=1,2…n)所得的W=(W1,W2…Wn)T即為所求得得特征向量量,亦即判判斷矩陣的的層次單排排序結(jié)果。。例7—5設(shè)設(shè)有一判判斷矩陣,,用和積法法進(jìn)行層次次單排序解解:①①各列經(jīng)歸歸一化后得得:②②按行行相加得::=0.222+0.217+0.250=0.689=0.667+0.652+0.625=1.944=0.111+0.131+0.125=0.367③③將向向量=(0.689,1.944,0.367)T歸一化得::W=(0.230,0.648,0.122)T即為該判斷斷矩陣的層層次單排序序(或特征征向量)(2)方根根法
1°°計算判斷斷矩陣每一一行元素的的連乘積Mi(i=1,2…n)2°計算的的n次方根(i=1,2…n)
3°°將向量歸歸一化(i=1,2…n)則歸一化后后的向量W=(W1,W2…Wn)T即為所求的的特征向量量,亦即即判斷矩陣陣的層次單單排序。例7—6對對例7——5的判斷斷矩陣,用用方根法進(jìn)進(jìn)行層次單單排序。解:①計算算每一行的的連乘積::M1=1×1/3×2=0.667M2=3×1××5=15M3=1/2××1/5××1=0.100②計算Mi的3次方根根③將=(0.874,2.466,0.464)T歸一化得::W=(0.230,0.648,0.122)T即為該判斷斷矩陣的特特征向量.5、判斷矩矩陣的一致致性檢驗根據(jù)矩陣?yán)砝碚?,?dāng)n階判斷矩矩陣B具有有完全一致致性時,它它具有唯一一非零的,,也是最大大的特征根根,,且其其它特征根根均為零。。當(dāng)判斷矩矩陣不能保保證具有完完全一致性性時,相應(yīng)應(yīng)判斷矩陣陣的特征根根也將發(fā)生生變化,且且。。這樣樣,就可利利用判斷矩矩陣的特征征根的變化化來檢查判判斷的一致致性程度。。設(shè)n階判斷斷矩陣為B,則可用用以下方法法求出其最最大特征根根::其其中::W=(W1,W2,…Wn)T為B的特征征向量。由此可得公公式:在在層次次分析法中中,我們用用以下的一一致性指標(biāo)標(biāo)來檢驗判判斷的一致致性。一一致性指指標(biāo)CI值值越大,表表明判斷矩矩陣偏離完完全一致性性嚴(yán)重,CI值越小小,表明判判斷矩陣越越接近完全全一致性。。通通常,,判斷矩陣陣的階數(shù)n越大,人人為造成偏偏離完全一一致性的指指標(biāo)CI越越大,n越越小,CI也越小。。對多階判斷斷矩陣,還還需引入判判斷矩陣的的平均隨機(jī)機(jī)一致性指指標(biāo),記作作RI,對對于n=1~10階階判斷矩陣陣的RI值值,其數(shù)值值見表7———8。n12345678910
RI000.580.901.121.241.321.411.451.47當(dāng)n﹤3時,判判斷矩陣陣永遠(yuǎn)具具有完全全一致性性,判斷斷矩陣的的一致性性指標(biāo)CI與同同階平均均隨機(jī)一一致性指指標(biāo)RI之比稱稱為隨機(jī)機(jī)一致性性比率,,記作CR,即即:當(dāng)當(dāng)CR﹤0.10時,便便認(rèn)為判判斷矩陣陣具有滿滿意的一一致性。。否則,,就需要要調(diào)整判判斷矩陣陣,使之之滿足CR﹤0.1,從而具具有滿意意的一致致性。例7-7試試對例7-5中中的判斷斷矩陣,,試進(jìn)行行一致性性檢驗。。
解::由例7-6知知,W=(0.230,0.648,0.122)T由方程::BW=λW得::=即即:=解得:因因此:查查表7-10得:RI=0.58從從而:6.層次次總排序序。利用同一一層次中中所有層層次單排排序的結(jié)結(jié)果,就就可計算算針對上上一層次次而言,,本層次次所有元元素相對對重要性性的數(shù)值值,即層層次總排排序。層層次總排排序的方方法可用用表7-11說說明??偱判虻牡囊恢滦孕詸z驗設(shè)設(shè):CI為層層次總排排序一致致性指標(biāo)標(biāo);RI為層次次總排序序平均隨隨機(jī)一致致性指標(biāo)標(biāo);CR為層次次總排序序隨機(jī)一一致性比比率。一致性檢檢驗:CI=0.230×0.022+0.648×0.008+0.122×0.035=0.025RI=0.230×0.58+0.648××0.58+0.122×0.58=0.58三、模糊糊綜合評評價法((一))步驟1由由有關(guān)專專家組成成評價小小組;2確確定系統(tǒng)統(tǒng)的評價價項目集集和評價價尺度集集;〔〔設(shè)設(shè)Ak(k=1,2,……p)為p個可行行方案〕〕評評價價項目集集:F=(f1,f2……fn)(設(shè)設(shè)有n個個評價項項目)評評價價尺度集集:E=(e1,e2……em)((設(shè)設(shè)每個評評價項目目有m個個評價尺尺度)3確定定各評價價項目的的權(quán)重;;評評價項項目權(quán)重重:W=(w1,w2……wn)
4按按照已已經(jīng)制定定的評價價尺度,,對各可可行方案案的評價價項目進(jìn)進(jìn)行模糊糊評定,,并建立立隸屬度度矩陣。。第k個可可行方案案Ak的隸屬度度矩陣Rk:5計算算可行方方案Ak的模糊綜綜合評定定向量Sk。由由Rk=(rikj)mn以及權(quán)向向量W=(w1,w2……wn),可得得用模糊糊矩陣形形式表示示的可行行方案Ak的模糊綜綜合評定定向量Sk:Sk=WRk=(S1kS2k……Smk)展開后可可得:Sk也可以用用另一種種算法:6、計算算可行方方案AK的優(yōu)先度度NK可用下式式計算::7、根據(jù)據(jù)各可行行方案優(yōu)優(yōu)先度的的大小,,即可對對可行方方案進(jìn)行行優(yōu)先順順序的排排序,為為決策提提供所需需信息。。(二)舉舉例例例7—8由由九九名專家家確定五五項科研研課題A1,,A2,A3,A4,A5的優(yōu)先順順序。評評價項項目集::(權(quán)重重見表7—13)f1:立題題必要性性;:f2:技術(shù)術(shù)先進(jìn)性性f3:實施施可行性性f4:經(jīng)濟(jì)濟(jì)合理性性f5:社會會效益評價尺度度:e1:非常常必要((0.9分)e2:很必必要((0.7分)e3:必要要((0.5分)e4:一般般((0.3分)e5:不必必要((0.1分)對對A1方案的評評價結(jié)果果見表7—13。計算各評評價尺度度的隸屬屬度如下下:同理可計計算其他他評價項項目個評評價尺度度的隸屬屬度,從從而可得得A1的隸屬度度矩陣R1如下:計算綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職市場營銷(策劃實操技術(shù))試題及答案
- 2025年大學(xué)四年級(農(nóng)學(xué))作物栽培學(xué)試題及答案
- 2025年大學(xué)衛(wèi)生監(jiān)督(衛(wèi)生監(jiān)督研究)試題及答案
- 2025中國科學(xué)院地球環(huán)境研究所現(xiàn)代環(huán)境研究室招聘1人備考題庫有完整答案詳解
- 2025浙江杭州臨平環(huán)境科技有限公司招聘49人備考題庫附答案詳解
- 2026四川成都市新都區(qū)婦幼保健院編外專業(yè)技術(shù)人員招聘2人備考題庫附答案詳解
- 2022-2023學(xué)年廣東深圳德琳學(xué)校九年級上學(xué)期期中道法試題含答案
- 2026中國聯(lián)通上海市分公司校園招聘備考題庫完整答案詳解
- 2026南京大學(xué)YJ20260139天文與空間科學(xué)學(xué)院博士后招聘1人備考題庫有答案詳解
- 2026四川大學(xué)華西醫(yī)院醫(yī)院感染管理部項目制科研助理招聘1人備考題庫完整參考答案詳解
- 土石方測量施工方案
- 預(yù)防凍雨災(zāi)害課件
- 2025巴彥淖爾市農(nóng)墾(集團(tuán))有限公司招聘37人備考題庫含答案解析(奪冠)
- 北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末調(diào)研試題含解析
- 2025版 全套200MW800MWh獨(dú)立儲能項目EPC工程概算表
- 順德家俱行業(yè)分析會報告
- 2025年司法協(xié)理員年度考核表
- 風(fēng)電項目質(zhì)量管理
- 福建省福州市福清市2024-2025學(xué)年二年級上學(xué)期期末考試語文試卷
- 非煤地下礦山員工培訓(xùn)
- 保安法律法規(guī)及業(yè)務(wù)能力培訓(xùn)
評論
0/150
提交評論