版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學年高考數(shù)學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.2.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.33.已知為虛數(shù)單位,若復數(shù),則A. B.C. D.4.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應填的數(shù)字為A.4 B.5 C.6 D.75.若實數(shù)、滿足,則的最小值是()A. B. C. D.6.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種7.設(shè)集合則()A. B. C. D.8.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.9.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.10.已知集合A={x|x<1},B={x|},則A. B.C. D.11.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.212.已知復數(shù),則的虛部為()A.-1 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則__________.14.展開式中項的系數(shù)是__________15.已知復數(shù)對應的點位于第二象限,則實數(shù)的范圍為______.16.設(shè)為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在矩形中,,,點是邊上一點,且,點是的中點,將沿著折起,使點運動到點處,且滿足.(1)證明:平面;(2)求二面角的余弦值.18.(12分)已知函數(shù)的導函數(shù)的兩個零點為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.20.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.21.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.22.(10分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【題目詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【答案點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.2、D【答案解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【題目詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【答案點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.3、B【答案解析】
因為,所以,故選B.4、B【答案解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.5、D【答案解析】
根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【題目詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【答案點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.6、D【答案解析】
采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【題目詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【答案點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎(chǔ)題7、C【答案解析】
直接求交集得到答案.【題目詳解】集合,則.故選:.【答案點睛】本題考查了交集運算,屬于簡單題.8、C【答案解析】
根據(jù)題意知,,代入公式,求出即可.【題目詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【答案點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.9、A【答案解析】
計算出黑色部分的面積與總面積的比,即可得解.【題目詳解】由,∴.故選:A【答案點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.10、A【答案解析】∵集合∴∵集合∴,故選A11、C【答案解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【題目詳解】解:,,解得:.故選:C.【答案點睛】本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把當成進行運算.12、A【答案解析】
分子分母同乘分母的共軛復數(shù)即可.【題目詳解】,故的虛部為.故選:A.【答案點睛】本題考查復數(shù)的除法運算,考查學生運算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.14、-20【答案解析】
根據(jù)二項式定理的通項公式,再分情況考慮即可求解.【題目詳解】解:展開式中項的系數(shù):二項式由通項公式當時,項的系數(shù)是,當時,項的系數(shù)是,故的系數(shù)為;故答案為:【答案點睛】本題主要考查二項式定理的應用,注意分情況考慮,屬于基礎(chǔ)題.15、【答案解析】
由復數(shù)對應的點,在第二象限,得,且,從而求出實數(shù)的范圍.【題目詳解】解:∵復數(shù)對應的點位于第二象限,∴,且,∴,故答案為:.【答案點睛】本題主要考查復數(shù)與復平面內(nèi)對應點之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.16、或【答案解析】
設(shè)出三點的坐標,結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進行求解即可.【題目詳解】拋物線的準線方程為:,設(shè),由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【答案點睛】本題考查了拋物線的定義的應用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【答案解析】
(1)取的中點,連接,,由,進而,由,得.進而平面,進而結(jié)論可得證(2)(方法一)過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點,上的點,使,連接,得,,得二面角的平面角為,再求解即可【題目詳解】(1)證明:取的中點,連接,,由已知得,所以,又點是的中點,所以.因為,點是線段的中點,所以.又因為,所以,從而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,過點作的平行線交于點,以點為坐標原點,所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標系,則點,,,,所以,,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點,上的點,使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計算得,,,所以.【答案點睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計算能力,是中檔題18、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【答案解析】
(1)求得,由題意可知和是函數(shù)的兩個零點,根據(jù)函數(shù)的符號變化可得出的符號變化,進而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進而得出,解出、、的值,然后利用導數(shù)可求得函數(shù)在區(qū)間上的最大值.【題目詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【答案點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計算能力,屬于中等題.19、(1);(2)不存在.【答案解析】
(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【題目詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.20、(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【答案解析】
(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【題目詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據(jù)解,得或【答案點睛】本題考查極坐標與直角坐標的互化,考查參數(shù)方程與普通方程的互化,屬于基礎(chǔ)題.21、.【答案解析】試題分析:,所以.試題解析:B.因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加盟餛飩合同范本
- 勞務分包的協(xié)議書
- 快遞轉(zhuǎn)租合同范本
- 陶瓷施釉工崗前規(guī)章制度考核試卷含答案
- 出售連租合同范本
- 香榧買賣合同范本
- 涼菜代加工協(xié)議書
- 出口發(fā)票合同協(xié)議
- 露天礦采礦前裝機司機崗前技術(shù)基礎(chǔ)考核試卷含答案
- 鉤機臺班協(xié)議合同
- 2025貴州銅仁市千名英才·智匯銅仁赴西安引才151人(公共基礎(chǔ)知識)測試題附答案解析
- 復腎寧膠囊質(zhì)量標準研究
- 2025年10月自考14462小學綜合性學習與跨學科教學.試題及答案
- 【2025年】社區(qū)治理試題及答案
- 2025廣東陽江市陽春市選聘市屬國有企業(yè)領(lǐng)導人員擬聘用人員筆試歷年參考題庫附帶答案詳解
- 七年級歷史上冊第三次月考卷新教材統(tǒng)編版
- 德國風俗文化概述
- 盤古開天神話故事學習課件
- 2025年《保密法》知識考試題庫及答案解析
- 糖尿病足潰瘍VSD治療創(chuàng)面負壓參數(shù)優(yōu)化方案
- 英語專業(yè)畢業(yè)論文完整版
評論
0/150
提交評論