2021-2022學(xué)年上海市金山區(qū)金山中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
2021-2022學(xué)年上海市金山區(qū)金山中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
2021-2022學(xué)年上海市金山區(qū)金山中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
2021-2022學(xué)年上海市金山區(qū)金山中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
2021-2022學(xué)年上海市金山區(qū)金山中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余13頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.年部分省市將實(shí)行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B.C. D.2.若雙曲線的焦距為,則的一個焦點(diǎn)到一條漸近線的距離為()A. B. C. D.3.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.4.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.5.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.6.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.7.已知,,則()A. B. C. D.8.如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.9.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變10.已知集合,,則A. B.C. D.11.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.12.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點(diǎn),則實(shí)數(shù)的取值范圍為__________________.14.已知函數(shù),若,則的取值范圍是__15.已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=e-x-1-x,則曲線y=f(x)16.設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點(diǎn),求實(shí)數(shù)a的取值范圍.18.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.21.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個零點(diǎn),且此時恒成立,求實(shí)數(shù)m的取值范圍.22.(10分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.2.B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨?。挥纸裹c(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.3.B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.4.D【解析】

根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.5.D【解析】

按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.6.C【解析】

根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.7.D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.8.D【解析】

根據(jù)三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構(gòu)成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點(diǎn)睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.9.D【解析】

由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題10.D【解析】

因?yàn)?,所以,,故選D.11.B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.12.B【解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯誤;選項(xiàng)B,因?yàn)?,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯誤;選項(xiàng)D,,選項(xiàng)D錯誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.14.【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時,,,當(dāng)時,,所以,故的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.15.y=2x【解析】試題分析:當(dāng)x>0時,-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當(dāng)x>0時,函數(shù)y=f(x),則當(dāng)x<0時,求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).16.【解析】

由已知條件得出關(guān)于首項(xiàng)和公差的方程組,解出這兩個量,計算出,利用二次函數(shù)的基本性質(zhì)求出的最大值及其對應(yīng)的值,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由,解得,.所以,當(dāng)時,取得最大值,對任意都有成立,則為數(shù)列的最大值,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和最值的計算,一般利用二次函數(shù)的基本性質(zhì)求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】

(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點(diǎn)的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時,,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時,令,解得或,當(dāng)或時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,∴函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為(2)(Ⅰ)當(dāng)時,所以在上無零點(diǎn);(Ⅱ)當(dāng)時,,①若,即,則是的一個零點(diǎn);②若,即,則不是的零點(diǎn)(Ⅲ)當(dāng)時,,所以此時只需考慮函數(shù)在上零點(diǎn)的情況,因?yàn)?所以①當(dāng)時,在上單調(diào)遞增。又,所以(?。┊?dāng)時,在上無零點(diǎn);(ⅱ)當(dāng)時,,又,所以此時在上恰有一個零點(diǎn);②當(dāng)時,令,得,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)?,所以此時在上恰有一個零點(diǎn),綜上,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間,考查利用導(dǎo)數(shù)處理零點(diǎn)個數(shù)問題,考查運(yùn)算能力,考查分類討論思想18.(1);(2)證明見解析【解析】

(1)根據(jù),,成等比數(shù)列,有,結(jié)合公差,,求得通項(xiàng),再解不等式.(2)根據(jù)(1),用裂項(xiàng)相消法求和,然后研究其單調(diào)性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當(dāng)時,單調(diào)遞增,且,當(dāng)時,單調(diào)遞增,且,所以,由,知不等式成立.【點(diǎn)睛】本題主要考查等差數(shù)列的基本運(yùn)算和裂項(xiàng)相消法求和,還考查了運(yùn)算求解的能力,屬于中檔題.19.(1)(2)【解析】

(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當(dāng)時,即【點(diǎn)睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.20.(1).(2)【解析】

(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對于曲線的極坐標(biāo)方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡得:,則.所以.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及直線的參數(shù)方程的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21.(1)時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2).【解析】

(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時,,單調(diào)遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個數(shù)與不等式恒成立問題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過導(dǎo)數(shù)求解.22.(1);(2)【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論