版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1CH1:RandomProcessesIntroductionMathematicalDefinitionofaRandomProcessStationaryProcessesMean,Correlation,andCovarianceFunctionsErgodicProcessesTransmissionofaRandomProcessThroughaLinearTime-InvariantFilterPowerSpectralDensityGaussianProcessNoiseNarrowbandNoiseRepresentationofNarrowbandNoiseinTermsofIn-phaseandQuadratureComponentsRepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsSineWavePlusNarrowbandNoiseComputerExperiments:Flat-FadingChannelSummaryandDiscussion21.1IntroductionTwomathematicalmodelsDeterministicStochastic(orrandom)Receivedsignalinacommunicationsystemusuallyconsistsof:Information-bearingsignalRandominterferenceChannelnoise
DescribingthesignalusingstatisticalparametersAveragepower,powerspectraldensity,…3Random(stochastic)processPropertiesFunctionoftimeRandomDefinitionEnsembleoftimefunctionsAprobabilityrule1.2MathematicalDefinitionofaRandomProcess41.2MathematicalDefinitionofaRandomProcess(Cont’d)Figure1.1Anensembleofsamplefunctions.Someconcepts:SamplespaceSRandomprocessX(t,S)=X(t)SamplepointsjRealization(samplefunction)
xj(t)=X(t,sj)Randomvariable51.3StationaryProcessThejointdistributionfunction:Strictlystationary:Foralltimeshifts
,allk,andallpossiblechoicesofobservationtimest1,…,tk,equation(1)isalwaystrue.Twospecialcases(wide-sensestationary):6Example1.1Three
spatialwindowslocatedattimest1,t2,andt3,theprobabilityofthejointevent:
Intermsofthejointdistributionfunction,thisprobabilityequals:1.3StationaryProcessFigure1.2Illustratingtheprobabilityofajointevent.71.3StationaryProcessFigure1.3IllustratingtheconceptofstationaryinExample1.1.81.4Mean,Correlation,andCovarianceFunctionsMean:Autocorrelationfunction:Autocovariancefunction:(Stationary)Cross-correlationfunction:91.4Mean,Correlation,andCovarianceFunctions(Cont’d)Themeanandautocorrelationfunctionprovideapartialdescriptionofarandomprocess.Wide-sensestationaryMeanisaconstantandautocorrelationfunctiondependsonlyontimedifference.OftenusedinpracticeNotnecessarystrictlystationary,andviseverse.10PropertiesoftheAutocorrelationFunctionProperties:DefiningautocorrelationfunctionofastationaryprocessX(t)as:11PropertiesoftheAutocorrelationFunction(Cont’d)Figure1.4Illustratingtheautocorrelationfunctionsofslowlyandrapidlyfluctuatingrandomprocesses.12Example1.2SinusoidalWavewithRandomPhaseAandfcareconstants,and13Example1.2(Cont’d)TheautocorrelationfunctionofX(t)is:14Example1.2(Cont’d)
Figure1.5Autocorrelationfunctionofasinewavewithrandomphase.15Example1.3RandomBinaryWave
Figure1.6Samplefunctionofrandombinarywave.16Example1.3(Cont’d)Figure1.7Autocorrelationfunctionofrandombinarywave.17Cross-CorrelationFunctionsTworandomprocessesX(t)andY(t)withautocorrelationfunctionsRX(t,u)andRY(t,u),thetwocross-correlationfunctionsofX(t)andY(t)aredefinedby:Thecorrelationmatrix:Asymmetryrelationship:18Example1.4Quadrature-ModulatedProcesses
19Example1.4(Cont’d)
201.5ErgodicProcessesUsingtimeaveragestoapproximateensembleaverages.Consideringasamplefunctionx(t)ofastationaryprocessX(t)inanobservationwindow–TtT:(TheDCvalue)TimeaverageX(T)
representsanunbiasedestimateoftheensemble-averagedmeanX.211.5ErgodicProcesses(Cont’d)AprocessX(t)isergodicinthemeaniftwoconditionsaresatisfied:AprocessX(t)isergodicintheautocorrelationfunctioniftwoconditionsaresatisfied:Forarandomprocesstobeergodic,ithastobestationary;butastationaryrandomprocessisnotnecessarilyergodic.221.6TransmissionofaRandomProcessThroughaLinearTime-InvariantFilterFigure1.8transmissionofarandomprocessthroughalineartime-invariantfilter.231.6TransmissionThroughaLinearTime-InvariantFilter(Cont’d)241.7PowerSpectralDensity(PSD)25DefinitionofPSDThepowerspectraldensity(orpowerspectrum)istheFouriertransformoftheautocorrelationfunction.Asaresult,IfThenandfissmall,26PropertiesofPSDThePSDandtheautocorrelationfunctionformaFourier-transformpair.TheEinstein-Wiener-KhintchineRelations27PropertiesofPSD(Cont’d)isaprobabilitydensityfunction.28PSDExample1Sinusoidalwavewithrandomphase29PSDExample1(Cont’d)Figure1.10Powerspectraldensityofsinewavewithrandomphase.30PSDExample2Randombinarywave31PSDExample2(Cont’d)Figure1.11Powerspectraldensityofrandombinarywave.32PSDExample3Mixingofarandomprocesswithasinusoidalprocess33PSD’sofInput/OutputProcesses34PSDandtheMagnitudeSpectrumWeareconsideringanergodicstationaryprocess.Fouriertransformablerequiresabsolutelyintegrable,thatiswhichcannotbesatisfiedbyastationaryfunction.Soweuseatruncatedsegmentofx(t),whoseFouriertransformis35PSDandtheMagnitudeSpectrum(Cont’d)ThePeriodogram36PSDandtheMagnitudeSpectrum(Cont’d)37Cross-SpectralDensities(CSD)Properties38CSDExample139ConceptsStatisticallyindependentanduncorrelatedStatisticallyindependent:F(X,Y)=F(X)F(Y)Uncorrelated:CXY()=0Independentstatisticsarealwaysuncorrelated,buttheconverseisnotnecessarilytrue.40CSDExample2Figure1.12Apairofseparatelineartime-invariantfilters.411.8GaussianProcessDefinition:SupposeSisthesetoflinearfunctionalsofarandomprocessX(t)withfinitemean-squarevalue,ifeveryelementinSisaGaussian-distributedrandomvariable,thenX(t)isaGaussianprocess.Inshort,X(t)isaGaussianprocessifeverylinearfunctionalofX(t)isaGaussianrandomvariable.EasytoprocessandfitformanyphysicalphenomenaAlinearfunctionalofX(t)pdfofGaussiandistribution:pdfofnormalizedGaussiandistributionYN(0,1):42GaussianDistributionFigure1.13NormalizedGaussiandistribution.43CentralLimitTheoremIndependentlyandidenticallydistributed(i.i.d.)randomvariablesXi,i=1,2,…TheXiarestatisticallyindependentTheXihavethesameprobabilitydistributionYiarenormalizedversionofXi Yi=(Xi-x)/X,i=1,2,…Thecentrallimittheorem:44PropertiesofaGaussianProcessIftheinputprocesstoastablelinearfilterisGaussian,thentheoutputprocessisalsoGaussian.ThesetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimesarejointlyGaussian.(CanbeusedasadefinitionofGaussianprocess)DeterminantofMeanvectorCovariancematrix45PropertiesofaGaussianProcess(Cont’d)IfaGaussianprocessisstationary,thentheprocessisalsostrictlystationary.IfasetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimeareuncorrelated,thentheyarestatisticallyindependent.461.9NoiseExternalorinternaltothesystemShotnoiseArisingduetothediscretenatureofcurrentflowinsomeelectronicdevicesNumberofarriversinapre-definedintervalfollowsPoissondistributionThermalNoiseArisingduetorandommotionofelectronsinaconductorUsuallymodeledusingtheThéveninequivalentcircuitortheNortonequivalentcircuitAvailablenoisepoweriskTfwatts.At20oC,kT-174dBm/Hz47ModelingThermalNoiseFigure1.15Modelsofanoisyresistor.(a)Théveninequivalentcircuit.(b)Nortonequivalentcircuit.48WhiteNoiseAnidealizedformofnoisefornoiseanalysisofcommunicationsystemsFigure1.16Characteristicsofwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.Boltzmann’sconstantEquivalentnoisetemperature49WhiteNoise(Cont’d)SamplesatdifferenttimesonawhitenoiseareuncorrelatedIfthewhitenoiseisGaussian(calledwhiteGaussiannoise),thesamplesarealsostatisticallyindependent(theultimaterandomness)Aslongasthebandwidthofanoiseprocessattheinputofasystemisappreciablylargerthanthatofthesystemitself,wemaymodelthenoiseprocessaswhitenoise.50Example1.10IdealLow-PassFilteredWhiteNoiseFigure1.17Characteristicsoflow-passfilteredwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.51Example1.11CorrelationofWhiteNoisewithaSinusoidalWave52RepresentationsofBand-PassSignals
(Appendix2.3,2.4)Aband-passsignalisdefinedas:Hilberttransform53Band-PassSignals(Cont’d)Pre-envelope54NarrowbandSignalsFig.A2.4
Magnitudespectrumof(a)band-passsignal,(b)pre-envelope,(c)complexenvelope.551.10NarrowbandNoiseFig.1.18(a)Powerspectraldensityofnarrowbandnoise.(b)Samplefunctionofnarrowbandnoise.56NarrowbandNoise(Cont’d)Tworepresentations:In-phaseandquadraturecomponentsEnvelopandphaseEachrepresentationtotallydescribesthenoiseprocess.571.11RepresentationofNarrowbandNoiseinTermsof
In-PhaseandQuadratureComponentsThecanonicalrepresentationofnarrowbandnoisen(t)nI(t):thein-phasecomponentnQ(t):thequadraturecomponentTheyarebothlow-passsignals.Theyarefullyrepresentativeofn(t),exceptfc.58PropertiesoftheIn-PhaseandQuadratureComponentsofaNarrowbandNoiseZeormeanIfn(t)isGaussian,thennI(t)andnQ(t)arejointlyGuassianIfn(t)isstationary,thennI(t)andnQ(t)arejointlystationary59Properties(Cont’d)nI(t)andnQ(t)havethesamepowerspectraldensity60Properties(Cont’d)nI(t)andnQ(t)havethesamevarianceasn(t)Thecross-spectraldensityofnI(t)andnQ(t)ispurelyimaginary61Properties(Cont’d)Ifn(t)isGaussiananditspowerspectraldensitySN(f)issymmetricaboutthemid-bandfrequencyfc,thennI(t)andnQ(t)arestatisticallyindependent.62AnalyzerandSynthesizerFig.1.19(a)Extractionofin-phaseandquadraturecomponentsofanarrowbandprocess.(b)Generationofanarrowbandprocessfromitsin-phaseandquadraturecomponents.63Example1.12:IdealBand-PassFilteredWhiteNoise64Example1.12(Cont’d)Fig.1.20Characteristicsofidealband-passfilteredwhitenoise.
(a)Powerspectraldensity,
(b)Autocorrelationfunction,
(c)Powerspectraldensityofin-phaseandquadraturecomponents.651.12RepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsTheenvelopeofn(t)Thephaseofn(t)Theenveloper(t)andphase(t)arebothsamplefunctionsoflow-passrandomprocesses.66ProbabilityDistributionsoftheEnvelope
andPhaseComponentsTheprobabilitydistributionsarederivedfromthoseofNI(t)andNQ(t).67ProbabilityDistributions(Cont’d)Fig.1.21Illustratingthecoordinatesystemforrepresentationofnarrowbandnoise:(a)intermsofin-phaseandquadraturecomponents,and(b)intermsofenvelopeandphase.DefineThen68ProbabilityDistributions(Cont’d)Rayleighdistribution69ProbabilityDistributions(Cont’d)Fig.1.22
NormalizedRayleighdistribution.701.13SineWavePlusNarrowbandNoiseAssumi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省珠海市金灣區(qū)2025-2026學(xué)年度第一學(xué)期期末七年級地理試題(無答案)
- 養(yǎng)老院入住資格審核制度
- 信息安全與保密管理制度
- 空調(diào)公司管理制度廣告宣傳管理規(guī)定樣本
- 乙烯裝置操作工崗后知識考核試卷含答案
- 我國上市公司獨(dú)立董事薪酬激勵制度:現(xiàn)狀、問題與優(yōu)化路徑
- 我國上市公司換股合并中股東主動退出制度的多維審視與完善路徑
- 助聽器驗(yàn)配師持續(xù)改進(jìn)考核試卷含答案
- 硅烷法多晶硅制取工崗前創(chuàng)新實(shí)踐考核試卷含答案
- 化工萃取工操作規(guī)范評優(yōu)考核試卷含答案
- 藥庫工作述職報(bào)告
- GB 11174-2025液化石油氣
- 熱工儀表工試題全集
- 建筑室外亮化施工方案
- 2025-2030老年婚戀市場需求分析與服務(wù)平臺優(yōu)化方向
- 引水隧洞洞挖專項(xiàng)施工方案
- 醫(yī)療器械生產(chǎn)企業(yè)變更控制程序
- 疼痛科醫(yī)師進(jìn)修總結(jié)匯報(bào)
- 研究生學(xué)術(shù)交流論壇策劃
- 關(guān)于個人述責(zé)述廉存在問題及整改措施
- 靜脈穿刺血管選擇課件
評論
0/150
提交評論