版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.的零點所在區(qū)間為()A. B.C. D.2.若直線與直線垂直,則()A.6 B.4C. D.3.已知全集,集合則下圖中陰影部分所表示的集合為()A. B.C. D.4.命題“”否定是()A. B.C. D.5.函數(shù)f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=﹣x+1,則當x<0時,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣16.設全集,,,則()A. B.C. D.7.如圖所示,已知全集,集合,則圖中陰影部分表示的集合為()A. B.C. D.8.若,則A. B.C. D.9.今有一組實驗數(shù)據(jù)如下:x23456y1.52.012.985.028.98現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)所滿足的規(guī)律,其中最接近的一個是()A. B.C. D.10.若函數(shù)滿足且的最小值為,則函數(shù)的單調遞增區(qū)間為A. B.C. D.11.已知是方程的兩根,且,則的值為A. B.C.或 D.12.若定義域為R的函數(shù)滿足,且,,有,則的解集為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.計算:________.14.函數(shù)的零點個數(shù)為_________.15.命題“,使關于的方程有實數(shù)解”的否定是_________.16.若直線l在x軸上的截距為1,點到l的距離相等,則l的方程為______.三、解答題(本大題共6小題,共70分)17.設S={x|x=m+n,m、n∈Z}(1)若a∈Z,則a是否是集合S中的元素?(2)對S中的任意兩個x1、x2,則x1+x2、x1·x2是否屬于S?18.已知動圓經(jīng)過點和(1)當圓面積最小時,求圓的方程;(2)若圓的圓心在直線上,求圓的方程.19.為了研究某種微生物的生長規(guī)律,研究小組在實驗室對該種微生物進行培育實驗.前一天觀測得到該微生物的群落單位數(shù)量分別為8,14,26.根據(jù)實驗數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型:①;②,其中且.(1)根據(jù)實驗數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;(2)若第4天和第5天觀測得到的群落單位數(shù)量分別為50和98,請從兩個函數(shù)模型中選出更合適的一個,并預計從第幾天開始該微生物的群落單位數(shù)量超過500.20.已知向量,,設函數(shù)=+(1)求函數(shù)的最小正周期和單調遞增區(qū)間;(2)當時,求函數(shù)的值域21.已知函數(shù).(1)求函數(shù)最大值及相應的的值;(2)求函數(shù)的單調增區(qū)間.22.如圖,某園林單位準備綠化一塊直徑為的半圓形空,外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若,,,設的面積為,正方形的面積為(1)用表示和;(2)當變化時,求的最小值及此時角的大小.
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】根據(jù)零點存在性定理進行判斷即可【詳解】,,,,根據(jù)零點存在性定理可得,則的零點所在區(qū)間為故選C【點睛】本題考查零點存性定理,屬于基礎題2、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.3、C【解析】根據(jù)題意,結合Venn圖與集合間的基本運算,即可求解.【詳解】根據(jù)題意,易知圖中陰影部分所表示.故選:C.4、A【解析】根據(jù)全稱命題的否定為特稱命題,即可得到答案【詳解】全稱命題的否定為特稱命題,命題“”的否定是,故選:A5、B【解析】當x<0時,,選B.點睛:已知函數(shù)的奇偶性求函數(shù)值或解析式,首先抓住奇偶性討論函數(shù)在各個區(qū)間上的解析式,或充分利用奇偶性得出關于的方程,從而可得的值或解析式.6、B【解析】先求出集合B的補集,再求【詳解】因為,,所以,因為,所以,故選:B7、A【解析】根據(jù)文氏圖表示的集合求得正確答案.【詳解】文氏圖表示集合為,所以.故選:A8、D【解析】利用同角三角函數(shù)的基本關系,二倍角的余弦公式把要求的式子化為,把已知條件代入運算,求得結果.【詳解】,,故選D.【點睛】本題主要考查同角三角函數(shù)的基本關系,二倍角的余弦公式的應用,屬于中檔題.9、B【解析】根據(jù)表格中的數(shù)據(jù),作出散點圖,結合選項和函數(shù)的單調性,逐項判定,即可求解.【詳解】根據(jù)表格中的數(shù)據(jù),作出散點圖,如圖所示,根據(jù)散點圖可知,隨著的增大,的值增大,并且增長速度越來越快,結合選項:函數(shù)增長速度越來越緩慢,不符合題意;函數(shù)增長速度越來越快,符合題意;函數(shù),增長速度不變,不符合題意;而函數(shù),當時,可得;當時,可得,此時與真實數(shù)據(jù)誤差較大,所以最接近的一個函數(shù)是.故選:B.10、D【解析】分析:首先根據(jù)誘導公式和輔助角公式化簡函數(shù)解析式,之后應用題的條件求得函數(shù)的最小正周期,求得的值,從而求得函數(shù)解析式,之后利用整體思維,借助于正弦型函數(shù)的解題思路,求得函數(shù)的單調增區(qū)間.詳解:,根據(jù)題中條件滿足且的最小值為,所以有,所以,從而有,令,整理得,從而求得函數(shù)的單調遞增區(qū)間為,故選D.點睛:該題考查的是有關三角函數(shù)的綜合問題,涉及到的知識點有誘導公式、輔助角公式、函數(shù)的周期以及正弦型函數(shù)的單調區(qū)間的求法,在結題的過程中,需要對各個知識點要熟記,解題方法要明確.11、A【解析】∵是方程的兩根,∴,∴又,∴,∵,∴又,∴,∴.選A點睛:解決三角恒等變換中給值求角問題的注意點解決“給值求角”問題時,解題的關鍵也是變角,即把所求角用含已知角的式子表示,然后求出適合的一個三角函數(shù)值.再根據(jù)所給的條件確定所求角的范圍,最后結合該范圍求得角,有時為了解題需要壓縮角的取值范圍12、A【解析】根據(jù)已知條件易得關于直線x=2對稱且在上遞減,再應用單調性、對稱性求解不等式即可.【詳解】由題設知:關于直線x=2對稱且在上單調遞減由,得:,所以,解得故選:A二、填空題(本大題共4小題,共20分)13、【解析】由,利用正弦的和角公式求解即可【詳解】原式,故答案為:【點睛】本題考查正弦的和角公式的應用,考查三角函數(shù)的化簡問題14、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:315、,關于的方程無實數(shù)解【解析】直接利用特稱命題的否定為全稱命題求解即可.【詳解】因為特稱命題的否定為全稱命題,否定特稱命題是,既要否定結論,又要改變量詞,所以命題“,使關于的方程有實數(shù)解”的否定為:“,關于的方程無實數(shù)解”.故答案為:,關于的方程無實數(shù)解16、或【解析】考慮斜率不存在和存在兩種情況,利用點到直線距離公式計算得到答案.【詳解】顯然直線軸時符合要求,此時的方程為.當直線l的斜率存在時,設直線l的斜率為k,則l的方程為,即.∵A,B到l的距離相等∴,∴,∴,∴直線l的方程為.故答案為或【點睛】本題考查了點到直線的距離公式,忽略掉斜率不存在的情況是容易犯的錯誤.三、解答題(本大題共6小題,共70分)17、(1)見解析;(2)見解析.【解析】(1)由a=a+0×即可判斷;(2)不妨設x1=m+n,x2=p+q,經(jīng)過運算得x1+x2=(m+n)+(p+q),x1·x2=(mp+2nq)+(mq+np),即可判斷.試題解析:(1)a是集合S的元素,因為a=a+0×∈S(2)不妨設x1=m+n,x2=p+q,m、n、p、q∈Z則x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m+n∈Z.∴x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m、n、p、q∈Z故mp+2nq∈Z,mq+np∈Z∴x1·x2∈S綜上,x1+x2、x1·x2都屬于S點睛:集合是高考中必考的知識點,一般考查集合的表示、集合的運算比較多.對于集合的表示,特別是描述法的理解,一定要注意集合中元素是什么,然后看清其滿足的性質,將其化簡;考查集合的運算,多考查交并補運算,注意利用數(shù)軸來運算,要特別注意端點的取值是否在集合中,避免出錯18、(1)(2)【解析】(1)以為直徑的圓即為面積最小的圓,由此可以算出中點坐標和長度,即可求出圓的方程;(2)設出圓的標準方程,根據(jù)題意代入數(shù)值解方程組即可.【小問1詳解】要使圓的面積最小,則為圓的直徑,圓心,半徑所以所求圓的方程為:.【小問2詳解】設所求圓的方程為,根據(jù)已知條件得,所以所求圓的方程為.19、(1)函數(shù)模型①,函數(shù)模型②(2)函數(shù)模型②更合適,從第8天開始該微生物的群落單位數(shù)量超過500【解析】(1)可通過已知條件給到的數(shù)據(jù),分別帶入函數(shù)模型①和函數(shù)模型②,列出方程組求解出參數(shù)即可完成求解;(2)將第4天和第5天得到的數(shù)據(jù)與第(1)問計算出的函數(shù)模型①和函數(shù)模型②的表達式計算出的第4天和第5天的模擬數(shù)據(jù)對比,即可做出判斷并計算.【小問1詳解】對于函數(shù)模型①:把及相應y值代入得解得,所以.對于函數(shù)模型②:把及相應y值代入得解得,所以.【小問2詳解】對于模型①,當時,,當時,,故模型①不符合觀測數(shù)據(jù);對于模型②,當時,,當時,,符合觀測數(shù)據(jù),所以函數(shù)模型②更合適要使,則,即從第8天開始該微生物的群落單位數(shù)量超過500.20、(1);;(2)【解析】(1)根據(jù)向量數(shù)量積的坐標運算及輔助角公式,可得,然后由周期公式去求周期,再結合正弦函數(shù)的單調性去求函數(shù)的單調遞增區(qū)間;(2)由(1)知,由求出,再結合正弦函數(shù)的單調性去求函數(shù)的值域【詳解】(1)依題意得===的最小正周期是:由解得,從而可得函數(shù)的單調遞增區(qū)間是:(2)由,可得,所以,從而可得函數(shù)的值域是:21、(1)時,;(2).【解析】(1)利用倍角公式對函數(shù)進行化簡得:,進而得到函數(shù)的最大值及對應的的值;(2)將代入的單調遞增區(qū)間,即可得答案;【詳解】解:(1),當,即時,;(2)由題意得:,函數(shù)的單調增區(qū)間為.【點睛】本題考查三角恒等變換、正弦函數(shù)的最值和單調區(qū)間,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.22、(1);(2)最小值【解析】(1)在中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安車輛管理制度圖片大全(3篇)
- 餐廳十一活動策劃方案(3篇)
- 飛機安全出口課件
- 2026廣西欽州市靈山縣金鑫供銷集團有限公司招聘3人備考考試題庫及答案解析
- 2026河北雄安新區(qū)應急管理協(xié)會招聘1人筆試備考試題及答案解析
- 兒童股骨骨折的牽引治療與護理
- 2026湛江農(nóng)商銀行校園招聘15人備考考試題庫及答案解析
- 2026年普洱市廣播電視局招聘公益性崗位工作人員(2人)備考考試試題及答案解析
- 2026年1月廣東廣州市天河第一小學招聘編外聘用制專任教師1人筆試備考題庫及答案解析
- 2026重慶西南大學附屬中學招聘備考考試題庫及答案解析
- 旅居養(yǎng)老策劃方案
- T-CRHA 089-2024 成人床旁心電監(jiān)測護理規(guī)程
- DBJ52T 088-2018 貴州省建筑樁基設計與施工技術規(guī)程
- 專題15 物質的鑒別、分離、除雜、提純與共存問題 2024年中考化學真題分類匯編
- 小區(qū)房屋維修基金申請范文
- 武漢市江岸區(qū)2022-2023學年七年級上學期期末地理試題【帶答案】
- 中職高二家長會課件
- 復方蒲公英注射液在痤瘡中的應用研究
- 自動駕駛系統(tǒng)關鍵技術
- 淮安市2023-2024學年七年級上學期期末歷史試卷(含答案解析)
- 家長要求學校換老師的申請書
評論
0/150
提交評論