2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

A.x=-2B.x=2C.y=1D.y=-2

3.

4.

5.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散

6.

A.sinx+C

B.cosx+C

C.-sinx+C

D.-COSx+C

7.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4

8.

9.

10.微分方程y'=x的通解為A.A.2x2+C

B.x2+C

C.(1/2)x2+C

D.2x+C

11.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

12.極限等于().A.A.e1/2B.eC.e2D.1

13.

14.設(shè)方程y''-2y'-3y=f(x)有特解y*,則它的通解為A.y=C1e-x+C2e3x+y*

B.y=C1e-x+C2e3x

C.y=C1xe-x+C2e3x+y*

D.y=C1ex+C2e-3x+y*

15.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().

A.

B.x2

C.2x

D.2

16.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

17.

18.

19.函數(shù)z=x2-xy+y2+9x-6y+20有

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

20.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為.

31.

32.

33.

34.

35.

36.

37.

38.

則b__________.

39.

40.

三、計(jì)算題(20題)41.求微分方程的通解.

42.

43.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

46.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.證明:

50.求微分方程y"-4y'+4y=e-2x的通解.

51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

52.

53.

54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

56.

57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.

59.

60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

四、解答題(10題)61.求微分方程的通解。

62.計(jì)算,其中D是由x2+y2=1,y=x及x軸所圍成的第一象域的封閉圖形.

63.

64.

65.計(jì)算

66.

67.

68.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過(guò)切點(diǎn)A的切線方程.

69.

70.

五、高等數(shù)學(xué)(0題)71.

求dy。

六、解答題(0題)72.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問(wèn)繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?

參考答案

1.B解析:

2.C解析:

3.A解析:

4.A解析:

5.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

6.A

7.A

8.D

9.A

10.C

11.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

12.C本題考查的知識(shí)點(diǎn)為重要極限公式.

由于,可知應(yīng)選C.

13.C

14.A考慮對(duì)應(yīng)的齊次方程y''-2y'-3y==0的通解.特征方程為r2-2r-3=0,所以r1=-1,r2=3,所以y''-2y'-3y==0的通解為,所以原方程的通解為y=C1e-x+C2e3x+y*.

15.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.

由于x2為f(x)的原函數(shù),因此

f(x)=(x2)'=2x,

因此

f'(x)=2.

可知應(yīng)選D.

16.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

17.A

18.D解析:

19.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。

20.C

21.

22.tanθ-cotθ+C

23.eab

24.

25.

本題考查了一元函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)

26.0

27.11解析:

28.3

29.2

30.y=f(1).

本題考查的知識(shí)點(diǎn)有兩個(gè):-是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為

y-f(x0)=f(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f(x0)=0,故所求切線方程為

y—f(1)=0.

本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為

y-f(x0)=f(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為

y-f(1)=f(x)(x-1).

本例中由于f(x)為抽象函數(shù),-些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為

y-1=0.

31.2本題考查的知識(shí)點(diǎn)為二重積分的幾何意義.

由二重積分的幾何意義可知,所給二重積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知

32.

33.

34.

本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.

35.

36.3x2

37.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

38.所以b=2。所以b=2。

39.1/e1/e解析:

40.

41.

42.

43.

44.

45.函數(shù)的定義域?yàn)?/p>

注意

46.由二重積分物理意義知

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

51.

52.

53.

54.

55.

列表:

說(shuō)明

56.

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.由一階線性微分方程通解公式有

60.由等價(jià)無(wú)窮小量的定義可知

61.

對(duì)應(yīng)的齊次方程為特征方程為特征根為所以齊次方程的通解為設(shè)為原方程的一個(gè)特解,代入原方程可得所以原方程的通解為

62.在極坐標(biāo)系中,D可以表示為0≤θ≤1/4,0≤r≤1.

63.

64.

65.

本題考查的知識(shí)點(diǎn)為不定積分的換元積分運(yùn)算.

66.

67.

68.由于y=x2,則y'=2x,曲線y=x2上過(guò)點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論