版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年江蘇省連云港市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
2.等于()。A.-1B.-1/2C.1/2D.1
3.過(guò)點(diǎn)(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為
A.x/1=(y-2)/0=(z-4)/-3.
B.x/0=(y-2)/1=(z-4)/-3
C.x/-2=(y-2)/3=(z-4)/1
D.-2x+3(y-2)+z-4=0
4.
5.
6.
7.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
8.
9.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx10.A.
B.
C.
D.
11.
12.
13.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
14.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().
A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸
15.
16.
17.
18.設(shè)y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
19.下列函數(shù)中,在x=0處可導(dǎo)的是()
A.y=|x|
B.
C.y=x3
D.y=lnx
20.極限等于().A.A.e1/2B.eC.e2D.1二、填空題(20題)21.
22.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.23.________.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.36.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則37.
38.
39.40.三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.
44.
45.46.47.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.52.
53.54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
55.求微分方程y"-4y'+4y=e-2x的通解.
56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則57.證明:
58.
59.求微分方程的通解.60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.求由曲線y=2x-x2,y=x所圍成的平面圖形的面積S.并求此平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vx.
62.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問(wèn)繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
63.(本題滿分8分)
64.
65.66.求fe-2xdx。
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.求極限
六、解答題(0題)72.
參考答案
1.D
2.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
3.C本題考查了直線方程的知識(shí)點(diǎn).
4.D
5.A
6.B
7.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
8.A
9.A
10.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
11.B解析:
12.A
13.B
14.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.
15.A解析:
16.B
17.C
18.Cy=cosx,y'=-sinx,y''=-cosx.
19.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒(méi)定義).
20.C本題考查的知識(shí)點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
21.x=-322.0本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.
23.
24.
25.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
26.27.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
28.
29.
30.
31.0<k≤10<k≤1解析:
32.11解析:
33.22解析:
34.35.12dx+4dy.
本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
36.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此37.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此
38.-exsiny
39.
40.本題考查了交換積分次序的知識(shí)點(diǎn)。
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
42.
43.
44.由一階線性微分方程通解公式有
45.
46.
47.
48.
列表:
說(shuō)明
49.
50.由二重積分物理意義知
51.
52.
則
53.
54.函數(shù)的定義域?yàn)?/p>
注意
55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
56.由等價(jià)無(wú)窮小量的定義可知
57.
58.
59.60.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.所給平面圖形如圖4-1中陰影部分所示.
由,可解得因此
:本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.這是常見(jiàn)的考試題型,考生應(yīng)該熟練掌握.
62.63.本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
只需將被積函數(shù)進(jìn)行恒等變形,使之成為標(biāo)準(zhǔn)積分公式形式的函數(shù)或利用變量替換求積分的函數(shù).
64.65.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年黃陂區(qū)教育局聘用制教師公開(kāi)招聘27人備考題庫(kù)有答案詳解
- 2025江蘇南京大學(xué)前沿科學(xué)學(xué)院特任助理研究員招聘1人備考題庫(kù)及1套完整答案詳解
- 2026年?yáng)|營(yíng)廣饒縣事業(yè)單位公開(kāi)招聘工作人員備考題庫(kù)(35人)有答案詳解
- 2026廣西來(lái)賓市忻城縣發(fā)展和改革局招聘編外人員1人備考題庫(kù)及完整答案詳解
- 2026新興際華集團(tuán)所屬中新聯(lián)公司招聘事業(yè)部總經(jīng)理副總經(jīng)理備考題庫(kù)及參考答案詳解一套
- 2026安徽國(guó)晟建筑工程有限公司招聘6人備考題庫(kù)及完整答案詳解一套
- 2026上海市團(tuán)校(上海青年管理干部學(xué)院)招聘5人備考題庫(kù)及一套完整答案詳解
- 2026上海交通大學(xué)醫(yī)學(xué)院繼續(xù)教育學(xué)院繼續(xù)教育管理辦公室招聘1人備考題庫(kù)有答案詳解
- 金融風(fēng)險(xiǎn)評(píng)估與防范工具集
- 技能競(jìng)賽與挑戰(zhàn)活動(dòng)體驗(yàn)方案
- DB35-T 2278-2025 醫(yī)療保障監(jiān)測(cè)統(tǒng)計(jì)指標(biāo)規(guī)范
- 長(zhǎng)沙股權(quán)激勵(lì)協(xié)議書(shū)
- 心源性腦卒中的防治課件
- 2025年浙江輔警協(xié)警招聘考試真題含答案詳解(新)
- 果園合伙經(jīng)營(yíng)協(xié)議書(shū)
- 節(jié)能技術(shù)咨詢合同范本
- 物業(yè)管理經(jīng)理培訓(xùn)課件
- 員工解除競(jìng)業(yè)協(xié)議通知書(shū)
- 【語(yǔ)文】太原市小學(xué)一年級(jí)上冊(cè)期末試題(含答案)
- 儲(chǔ)能電站員工轉(zhuǎn)正述職報(bào)告
- DB3301∕T 0165-2018 城市照明設(shè)施養(yǎng)護(hù)維修服務(wù)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論