版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年遼寧省本溪市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
2.
3.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
4.
A.2B.1C.1/2D.05.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直6.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線(xiàn)方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
7.
A.-1/2
B.0
C.1/2
D.1
8.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
9.
10.()A.A.
B.
C.
D.
11.A.A.
B.
C.
D.
12.
13.
14.
15.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
16.
17.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
18.A.0B.1C.∞D(zhuǎn).不存在但不是∞19.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
20.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
二、填空題(20題)21.
22.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
23.設(shè)f(x)=x(x-1),則f'(1)=__________。24.25.26.
27.
28.設(shè)y=x+ex,則y'______.29.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則
30.
31.32.
33.
34.
35.曲線(xiàn)y=x/2x-1的水平漸近線(xiàn)方程為_(kāi)_________。
36.
37.設(shè)y=3+cosx,則y=.
38.
39.
40.三、計(jì)算題(20題)41.證明:42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
43.求微分方程y"-4y'+4y=e-2x的通解.
44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
45.
46.47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.50.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.51.52.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.求微分方程的通解.56.
57.
58.
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.
四、解答題(10題)61.62.63.
64.
65.
66.計(jì)算
67.68.(本題滿(mǎn)分8分)設(shè)y=y(x)由方程x2+2y3+2xy+3y-x=1確定,求y’69.設(shè)存在,求f(x).
70.
五、高等數(shù)學(xué)(0題)71.求函數(shù)I(x)=
的極值。
六、解答題(0題)72.
參考答案
1.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
2.A
3.A
4.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).
5.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
6.C
7.B
8.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱(chēng)性質(zhì)可知
可知應(yīng)選A。
9.C
10.C
11.D
12.B解析:
13.D
14.D
15.A本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
16.B
17.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
18.D
19.D
20.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.21.2x+3y.
本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
22.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
23.
24.
本題考查的知識(shí)點(diǎn)為重要極限公式.
25.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
26.
27.28.1+ex本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
y'=(x+ex)'=x'+(ex)'=1+ex.29.本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算。
如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長(zhǎng)、寬都為1的正形,可知其面積為1。因此
30.
31.
32.
33.11解析:
34.
35.y=1/2
36.37.-sinX.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
38.x(asinx+bcosx)
39.1/21/2解析:
40.-1本題考查了洛必達(dá)法則的知識(shí)點(diǎn).
41.
42.由等價(jià)無(wú)窮小量的定義可知
43.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
44.由二重積分物理意義知
45.
46.
47.
48.
列表:
說(shuō)明
49.
50.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
51.
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
54.
55.
56.
57.
58.
則
59.函數(shù)的定義域?yàn)?/p>
注意
60.由一階線(xiàn)性微分方程通解公式有
61.
62.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價(jià)無(wú)窮小代換)本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求極限.
由于問(wèn)題為“∞-∞”型極限問(wèn)題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問(wèn)題.
如果將上式右端直接利用洛必達(dá)法則求之,則運(yùn)算復(fù)雜.注意到使用洛必達(dá)法則求極限時(shí),如果能與等價(jià)無(wú)窮小代換相結(jié)合,則問(wèn)題常能得到簡(jiǎn)化,由于當(dāng)x→0時(shí),sinx~x,因此
從而能簡(jiǎn)化運(yùn)算.
本題考生中常見(jiàn)的錯(cuò)誤為:由于當(dāng)x→0時(shí),sinx~x,因此
將等價(jià)無(wú)窮小代換在加減法運(yùn)算中使用,這是不允許的.
63.
64.
65.
66.
67.
68.本題考查的知識(shí)點(diǎn)為隱函數(shù)求導(dǎo)法.
解法1將所給方程兩端關(guān)于x求導(dǎo),可得
解法2
y=y(tǒng)(x)由方程F(x,y)=0確定,求y通常有兩種方法:
-是將F(x,y)=0兩端關(guān)于x求導(dǎo),認(rèn)定y為中間變量,得到含有y的方程,從中解出y.
對(duì)于-些特殊情形,可以從F(x,y)=0中較易地解出y=y(tǒng)(x)時(shí),也可以先求出y=y(tǒng)(x),再直接求導(dǎo).
69.本題考查的知識(shí)點(diǎn)為兩個(gè):極限的運(yùn)算;極限值是個(gè)確定的數(shù)值.
設(shè)是本題求解的關(guān)鍵.未知函數(shù)f(x)在極限號(hào)內(nèi)或f(x)在定積分號(hào)內(nèi)的、以方程形式出現(xiàn)的這類(lèi)問(wèn)題,求解的基本思想是一樣的.請(qǐng)讀者明確并記住這種求解的基本思想.
本
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康促進(jìn)的未來(lái)發(fā)展趨勢(shì)
- 《整數(shù)除以分?jǐn)?shù)》數(shù)學(xué)課件教案
- 保護(hù)黃河的倡議書(shū)15篇
- 《基于BIM的綠色建筑施工進(jìn)度優(yōu)化與能源管理研究》教學(xué)研究課題報(bào)告
- 高中生物教師教學(xué)畫(huà)像構(gòu)建中的多源數(shù)據(jù)融合與教學(xué)效果評(píng)價(jià)教學(xué)研究課題報(bào)告
- 2025年寵物醫(yī)療美容行業(yè)品牌建設(shè)與營(yíng)銷(xiāo)策略報(bào)告
- 中共榮縣國(guó)有資產(chǎn)監(jiān)督管理工作委員會(huì)2025年榮縣縣屬?lài)?guó)有企業(yè)公開(kāi)招考人才儲(chǔ)備庫(kù)人員(60人)筆試參考題庫(kù)附帶答案詳解(3卷合一版)
- 2025重慶鏡辰美科技有限公司招聘筆試參考題庫(kù)附帶答案詳解(3卷合一版)
- 2025鄂爾多斯市人才發(fā)展集團(tuán)有限公司招聘市容管理服務(wù)專(zhuān)業(yè)技術(shù)人員10人筆試參考題庫(kù)附帶答案詳解(3卷合一版)
- 2025福建省閩投深海養(yǎng)殖裝備租賃有限責(zé)任公司招聘7人筆試參考題庫(kù)附帶答案詳解(3卷)
- 2025陜西西安市工會(huì)系統(tǒng)開(kāi)招聘工會(huì)社會(huì)工作者61人歷年題庫(kù)帶答案解析
- 外賣(mài)平臺(tái)2025年商家協(xié)議
- 2025年高職(鐵道車(chē)輛技術(shù))鐵道車(chē)輛制動(dòng)試題及答案
- (新教材)2026年人教版八年級(jí)下冊(cè)數(shù)學(xué) 24.4 數(shù)據(jù)的分組 課件
- 2025陜西榆林市榆陽(yáng)區(qū)部分區(qū)屬?lài)?guó)有企業(yè)招聘20人考試筆試模擬試題及答案解析
- 老年慢性病管理及康復(fù)護(hù)理
- 2026年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握校ㄓ?jì)算機(jī))考試參考題庫(kù)及答案1套
- 代辦執(zhí)照合同范本
- 2025昆明市呈貢區(qū)城市投資集團(tuán)有限公司及下屬子公司第一批招聘(12人)(公共基礎(chǔ)知識(shí))測(cè)試題附答案解析
- 2025年國(guó)家公務(wù)員錄用考試《行測(cè)+申論》真題卷(地市級(jí))及答案解析
- 商業(yè)廣場(chǎng)經(jīng)營(yíng)管理及物業(yè)管理服務(wù)方案
評(píng)論
0/150
提交評(píng)論