下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.2.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.83.若樣本的平均數(shù)是10,方差為2,則對(duì)于樣本,下列結(jié)論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為84.已知函數(shù),則不等式的解集是()A. B. C. D.5.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.37.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對(duì)稱 D.函數(shù)圖像關(guān)于對(duì)稱8.已知雙曲線的左焦點(diǎn)為,直線經(jīng)過點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),,若,則該雙曲線的離心率為().A. B. C. D.9.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.410.已知集合,則=()A. B. C. D.11.已知是虛數(shù)單位,若,則()A. B.2 C. D.1012.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.14.已知函數(shù)的圖象在處的切線斜率為,則______.15.已知數(shù)列的首項(xiàng),函數(shù)在上有唯一零點(diǎn),則數(shù)列|的前項(xiàng)和__________.16.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.18.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.20.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.21.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程是(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程;(2)在曲線上取一點(diǎn),直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),交曲線于點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.2.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.3.D【解析】
由兩組數(shù)據(jù)間的關(guān)系,可判斷二者平均數(shù)的關(guān)系,方差的關(guān)系,進(jìn)而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點(diǎn)睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.4.B【解析】
由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】函數(shù),可得,時(shí),,單調(diào)遞增,∵,故不等式的解集等價(jià)于不等式的解集..∴.故選:B.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.5.B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6.C【解析】
否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.7.C【解析】
依題意可得,即函數(shù)圖像關(guān)于對(duì)稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對(duì)稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.8.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點(diǎn)睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.9.D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.10.D【解析】
先求出集合A,B,再求集合B的補(bǔ)集,然后求【詳解】,所以.故選:D【點(diǎn)睛】此題考查的是集合的并集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.11.C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)計(jì)算即可.【詳解】因?yàn)?,所以,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.12.A【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.14.【解析】
先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線上在某點(diǎn)切線方程的斜率求參數(shù)的問題,屬于基礎(chǔ)題.15.【解析】
由函數(shù)為偶函數(shù),可得唯一零點(diǎn)為,代入可得數(shù)列的遞推關(guān)系式,再進(jìn)行配湊轉(zhuǎn)換為等比數(shù)列,最后運(yùn)用分部求和可得答案.【詳解】因?yàn)闉榕己瘮?shù),在上有唯一零點(diǎn),所以,∴,∴,∴為首項(xiàng)為2,公比為2的等比數(shù)列.所以,.故答案為:【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點(diǎn),同時(shí)也考查了由遞推關(guān)系式求數(shù)列的通項(xiàng),考查了數(shù)列的分部求和,屬于中檔題.16.【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價(jià)于在時(shí)恒成立,∴,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)45°【解析】
(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點(diǎn)睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進(jìn)行求解.18.(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;
(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點(diǎn)睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡整理的運(yùn)算能力,屬于中檔題.19.(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對(duì)值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時(shí),恒成立,;②當(dāng)時(shí),,即,;③當(dāng)時(shí),顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))(當(dāng)且僅當(dāng)時(shí)取等號(hào))上述三式相加可得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),,故得證.【點(diǎn)睛】本題考查解絕對(duì)值不等式和利用均值定理證明不等式,考查絕對(duì)值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對(duì)值不等式的方法,考查了分析能力和計(jì)算能力,屬于中檔題.20.(1);(2).【解析】
(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡即可求范圍.【詳解】(1)為的中點(diǎn),且是線段的中垂線,,又,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因?yàn)橹本€l總與橢圓C有且只有一個(gè)公共點(diǎn),所以,.①又由可得;同理可得.由原點(diǎn)O到直線的距離為和,可得.②將①代入②得,當(dāng)時(shí),,綜上,面積的取值范圍是.【點(diǎn)睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.21.(1)(2)證明見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水穩(wěn)施工方案從材料到養(yǎng)護(hù)的全程
- 江蘇理工學(xué)院《機(jī)械安全工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 六盤水師范學(xué)院《機(jī)械制圖Ⅱ》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西農(nóng)業(yè)大學(xué)《交互動(dòng)畫》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南警官學(xué)院《水質(zhì)毒性分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 衡陽師范學(xué)院南岳學(xué)院《微生物與人類健康》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年招9人西寧市中醫(yī)院公開招聘編外聘用人員筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 景德鎮(zhèn)陶瓷職業(yè)技術(shù)學(xué)院《歌劇表演實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 茅臺(tái)學(xué)院《醫(yī)學(xué)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年廣東廣州市皮膚病醫(yī)院招聘編制外合同制工作人員40人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025山西云時(shí)代技術(shù)有限公司校園招聘160人筆試參考題庫附帶答案詳解
- 拼多多公司績效管理制度
- 貿(mào)易公司貨權(quán)管理制度
- 生鮮采購年度工作總結(jié)
- 造價(jià)咨詢項(xiàng)目經(jīng)理責(zé)任制度
- 離婚協(xié)議書正規(guī)打印電子版(2025年版)
- FZ∕T 81008-2021 茄克衫行業(yè)標(biāo)準(zhǔn)
- 地學(xué)歌訣集成
- 幼兒園大班社會(huì)課件:《我是中國娃》
- 村莊搬遷可行性報(bào)告
- 儲(chǔ)物間管理制度
評(píng)論
0/150
提交評(píng)論