網絡科學第二講網絡與圖_第1頁
網絡科學第二講網絡與圖_第2頁
網絡科學第二講網絡與圖_第3頁
網絡科學第二講網絡與圖_第4頁
網絡科學第二講網絡與圖_第5頁
已閱讀5頁,還剩66頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

網絡科學基礎

ElementsofNetworkScience齊魯工業(yè)大學信息學院

主講人:張維玉

電話箱:zwy@第二講網絡與圖2023/2/1主講教師:張維玉2Canonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

Canonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

1735:LeonhardEuler’stheorem:Ifagraphhasnodesofodddegree,thereisnopath.Ifagraphisconnectedandhasnoodddegreenodes,ithasat

leastonepath.

components:nodes,vertices(節(jié)點)

N

interactions:links,edges (連邊)

L

system: network,graph (網絡,圖)

(N,L)NetworkScience:GraphTheory2012網絡組件networkoftenreferstorealsystemswww,socialnetworkmetabolicnetwork.Language:(Network,node,link)graph:mathematicalrepresentationofanetworkwebgraph,socialgraph(aFacebookterm)

Language:(Graph,vertex,edge)Wewilltrytomakethisdistinctionwheneveritisappropriate,butinmostcaseswewillusethetwotermsinterchangeably.(大部分場合,我們互用網絡和圖這兩個概念)網絡與圖的關系PeterMaryAlbertAlbertco-workerfriendbrothersfriendProtein1Protein2Protein5Protein9Movie1Movie3Movie2Actor3Actor1Actor2Actor4N=4L=4網絡是一種通用工具Thechoiceofthepropernetworkrepresentationdeterminesourabilitytousenetworktheorysuccessfully.

Insomecasesthereisaunique(獨一無二),unambiguousrepresentation.Inothercases,therepresentationisbynomeansunique.

Forexample,thewayweassignthelinksbetweenagroupofindividualswilldeterminethenatureofthequestionwecanstudy.選擇一個適當的網絡表達Ifyouconnectindividualsthatworkwitheachother,youwillexploretheprofessionalnetwork.NetworkScience:GraphTheory2012Ifyouconnectthosethathavearomanticandsexualrelationship,youwillbeexploringthesexualnetworks.Ifyouconnectindividualsbasedontheirfirstname(allPetersconnectedtoeachother),youwillbeexploringwhat?Itisanetwork,nevertheless.根據我們要研究的目標來構建網絡是開展研究的第一步!網絡不是毫無目的隨意構建的!Links:undirected(symmetrical,對稱關系) Graph:

Directedlinks:URLsonthewwwphonecallsmetabolicreactions(代謝反應)Undirected(無向網絡)Directed有向網絡ABDCLMFGHILinks:directed(arcs).Digraph=directedgraph:Undirectedlinks:coauthorshiplinksActornetworkproteininteractionsAnundirectedlinkisthesuperpositionoftwooppositedirectedlinks.AGFBCDENodedegree:thenumberoflinksconnectedtothenode.UndirectedIndirectednetworkswecandefineanin-degreeandout-degree.The(total)degreeisthesumofin-andout-degree.Source:anodewithkin=0;Sink:anodewithkout=0.DirectedAGFBCDEAB節(jié)點的度(degree)Wehaveasampleofvaluesx1,...,xNAverage

(a.k.a.mean):typicalvalue

<x>=(x1+x1+...+xN)/N=Σixi/N度的平均值能表達什么信息?度的平均值--一個統(tǒng)計意義上的值N–thenumberofnodesinthegraphUndirectedDirectedAFBCDEjiThemaximumnumberoflinksanetworkofNnodescanhaveis:AgraphwithLinkL=Lmax

iscalledacompletegraph,anditsaveragedegreeis<k>=N-1完全網絡Mostnetworksobservedinrealsystemsaresparse(稀疏):L<<Lmax

or

<k><<N-1. WWW(NDSample): N=325,729; L=1.4106 Lmax=1012 <k>=4.51 Protein(S.Cerevisiae): N=1,870; L=4,470 Lmax=107 <k>=2.39 Coauthorship(Math): N=70,975; L=2105 Lmax=31010 <k>=3.9 MovieActors: N=212,250; L=6106 Lmax=1.81013 <k>=28.78

真實的網絡大多都是稀疏的(sparse)ThemaximumnumberoflinksanetworkofNnodescanhaveis:METCALFE’SLAW(梅特卡夫定律)Aij=1ifthereisalinkbetweennodeiandjAij=0ifnodesiandjarenotconnectedtoeachother.網絡表示形式—連接矩陣Notethatforadirectedgraph(right)thematrixisnotsymmetric.

42312314abcdefgha01001010b10100001c01010110d00101000e10010000f

00100010g

10100000h

01000000begacfhdUndirected2314Directed42313UndirectedDirected1423214Actornetwork,protein-proteininteractionsWWW,citationnetworksUnweighted(無權重)(undirected)Weighted(有權重)(undirected)31423214protein-proteininteractions,wwwCallGraph,metabolicnetworksSelf-interactionsMultigraph(undirected)31423214Proteininteractionnetwork,wwwSocialnetworks,collaborationnetworksCompleteGraph(undirected)3142Actornetwork,protein-proteininteractions真實的網絡往往具備多種特征WWW>directedmultigraphwithself-interactionsProteinInteractions>undirectedunweightedwithself-interactionsCollaborationnetwork>undirectedmultigraphorweighted.Mobilephonecalls>directed,weighted.FacebookFriendshiplinks>undirected,unweighted.你的微博網絡符合哪些特征?bipartitegraph

(orbigraph)isagraphwhosenodescanbedividedintotwodisjointsets

UandVsuchthateverylinkconnectsanodeinUtooneinV;thatis,UandVareindependentsets.Examples:

HollywoodactornetworkCollaborationnetworksDiseasenetwork(diseasome)二部圖GenenetworkGENOMEPHENOMEDISEASOMEDiseasenetworkGoh,Cusick,Valle,Childs,Vidal&Barabási,PNAS(2007)GENENETWORK–DISEASENETWORKHUMANDISEASENETWORKNetworkScience:GraphTheory2012ApathisasequenceofnodesinwhicheachnodeisadjacenttothenextonePi0,inoflengthnbetweennodesi0andinisanorderedcollectionofn+1nodesandnlinks

Apathcanintersectitselfandpassthroughthesamelinkrepeatedly.Eachtimealinkiscrossed,itiscountedseparatelyAlegitimate(合法的)pathonthegraphontheright:ABCBCADEEBA

Inadirectednetwork,thepathcanfollowonlythedirectionofanarrow.PATHS(路徑)ABCDEThedistance(shortestpath,geodesicpath)betweentwonodesisdefinedasthenumberofedgesalongtheshortestpathconnectingthem.*Ifthetwonodesaredisconnected,thedistanceisinfinity.Indirectedgraphseachpathneedstofollowthedirectionofthearrows.ThusinadigraphthedistancefromnodeAtoB(onanABpath)isgenerallydifferentfromthedistancefromnodeBtoA(onaBCApath).DISTANCEINAGRAPHShortestPath,GeodesicPathDCABDCABNij,numberofpathsbetweenanytwonodesiandj:

Lengthn=1:

Ifthereisalinkbetweeniandj,thenAij=1andAij=0otherwise.Lengthn=2:

Ifthereisapathoflengthtwobetweeniandj,thenAikAkj=1,andAikAkj=0otherwise.Thenumberofpathsoflength2:Lengthn:Ingeneral,ifthereisapathoflengthnbetweeniandj,thenAik…Alj=1andAik…Alj=0otherwise.Thenumberofpathsoflengthnbetweeniandjis*

*holdsforbothdirectedandundirectednetworks.使用連接矩陣可以方便求出n步路徑的數量。NUMBEROFPATHSBETWEENTWONODESAdjacencyMatrixDistancebetweennode

1

andnode4:Startat

1.FINDINGDISTANCES:BREADTHFIRSTSEATCH1111222223333333344444444111111111222223333333344444444Distancebetweennode

1

andnode4:Startat

1.Findthenodesadjacentto

1.Markthemasatdistance1.Puttheminaqueue.11111111222223333333344444444Distancebetweennode

1

andnode4:Startat

1.Findthenodesadjacentto

1.Markthemasatdistance1.Puttheminaqueue.Takethefirstnodeoutofthequeue.Findtheunmarkednodesadjacenttoitinthegraph.Markthemwiththelabelof2.Puttheminthequeue.111122222111Distancebetweennode

1

andnode4:Repeatuntilyoufindnode4ortherearenomorenodesinthequeue.Thedistancebetween

1

and

4

isthelabelof

4

or,if

4

doesnothavealabel,infinity.1111222223333333344444444Diameter:

dmax

themaximumdistancebetweenanypairofnodesinthegraph.

Averagepathlength/distance,<d>,foraconnectedgraph:wheredij

isthedistancefromnodeitonodej

Inanundirectedgraph

dij=dji,so

weonlyneedtocountthemonce:NETWORKDIAMETERANDAVERAGEDISTANCECanonewalkacrossthesevenbridgesandnevercrossthesamebridgetwice?

/answer/graphs.htmEulerPATHorCIRCUIT:returntothestartingpointbytravelingeachlinkofthegraphonceandonlyonce.Everyvertexofthisgraphhasanevendegree,thereforethisisanEuleriangraph.FollowingtheedgesinalphabeticalordergivesanEuleriancircuit/cycle./wiki/Euler_circuitEULERIANGRAPH:ithasanEulerianpathIfadigraphisstronglyconnectedandthein-degreeofeachnodeisequaltoitsout-degree,thenthereisanEulercircuitOtherwisethereisnoEulercircuit.inacircuitweneedtoentereachnodeasmanytimesasweleaveit.ABCDEFGEULERCIRCUITSINDIRECTEDGRAPHSPATHOLOGY:summary25431Path25431ShortestPathAsequenceofnodessuchthateachnodeisconnectedtothenextnodealongthepathbyalink.Thepathwiththeshortestlengthbetweentwonodes(distance).PATHOLOGY:summary25431Diameter25431AveragePathLengthThelongestshortestpathinagraphTheaverageoftheshortestpathsforallpairsofnodes.25431Cycle25431Self-avoidingPathApathwiththesamestartandendnode.Apaththatdoesnotintersectitself.2543125431EulerianPathHamiltonianPathApaththatvisitseachnodeexactlyonce.Apaththattraverseseachlinkexactlyonce.Connected(undirected)graph:anytwoverticescanbejoinedbyapath.Adisconnectedgraphismadeupbytwoormoreconnectedcomponents.Bridge:ifweerase(去除)

it,thegraphbecomesdisconnected.LargestComponent:GiantComponent最大連通子圖Therest:IsolatesCONNECTIVITYOFUNDIRECTEDGRAPHSDCABFFGDCABFFGTheadjacencymatrixofanetworkwithseveralcomponentscanbewritteninablock-diagonalform,sothatnonzeroelementsareconfinedtosquares,withallotherelementsbeingzero:FigureafterNewman,2010CONNECTIVITYOFUNDIRECTEDGRAPHSAdjacencyMatrixNetworkScience:GraphTheory2012Stronglyconnecteddirectedgraph:hasapathfromeachnodetoeveryothernodeandviceversa(e.g.ABpathandBApath).Weaklyconnecteddirectedgraph:itisconnectedifwedisregardtheedgedirections.Stronglyconnectedcomponentscanbeidentified,butnoteverynodeispartofanontrivialstronglyconnectedcomponent.In-component:nodesthatcanreachthescc,Out-component:nodesthatcanbereachedfromthescc.DCABFGEECABGFDDegreedistribution pkTHREECENTRALQUANTITIESINNETWORKSCIENCEAveragepathlength <d>Clusteringcoefficient CWehaveasampleofvaluesx1,...,xNDistributionofx(a.k.a.PDF):probabilitythatarandomlychosenvalueisx

P(x)=(#valuesx)/N

ΣiP(xi)=1always!STATISTICSREMINDERHistograms>>>(直方圖)NetworkScience:GraphTheory2012Degreedistribution

P(k):probabilitythat

arandomlychosenvertexhasdegreekNk=#nodeswithdegreekP(k)=Nk/N?plotkP(k)123DEGREEDISTRIBUTIONdiscreterepresentation:pkist

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論