版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.2.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.3.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.4.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.35.已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是()A. B. C. D.6.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件7.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種8.函數(shù)在內(nèi)有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-29.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.10.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.11.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.12.設(shè)集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.14.已知向量,,,則__________.15.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.19.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設(shè)直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且20.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.21.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當(dāng)為中點時,求二面角余弦值.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.2、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.3、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.4、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運算能力,是一道容易題.5、A【解析】
建立平面直角坐標系,求出直線,設(shè)出點,通過,找出與的關(guān)系.通過數(shù)量積的坐標表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍.【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點,所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用.6、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.7、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時,共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時,要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.8、A【解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點,結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點;若,,在內(nèi)有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.9、A【解析】
由復(fù)數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉(zhuǎn),得到向量的坐標,則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.10、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.11、C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減.當(dāng)時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.12、D【解析】
利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率14、3【解析】
由題意得,,再代入中,計算即可得答案.【詳解】由題意可得,,∴,解得,∴.故答案為:.【點睛】本題考查向量模的計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意向量數(shù)量積公式的運用.15、【解析】
建系,設(shè)設(shè),由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學(xué)生的運算求解能力,是一道中檔題.16、【解析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關(guān)系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結(jié)果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設(shè)是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.18、(1)證明見解析;(2).【解析】
(1)把轉(zhuǎn)化成,令,由題意得,即證明恒成立,通過導(dǎo)數(shù)求證即可(2)直接求導(dǎo)可得,,令,得或,故根據(jù)0與的大小關(guān)系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當(dāng)時,.所以,即,所以.所以當(dāng)時,.解:(2)因為,所以.討論:①當(dāng)時,,此時函數(shù)在區(qū)間上單調(diào)遞減.又,故此時函數(shù)僅有一個零點為0;②當(dāng)時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當(dāng)時,有.又,此時,故當(dāng)時,函數(shù)還有一個零點,不符合題意;③當(dāng)時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當(dāng)且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導(dǎo)數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題19、(1)x22+y2【解析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構(gòu)成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設(shè)B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以O(shè)B=x②由原點O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設(shè)A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當(dāng)λ=45時,S=225所以△OAB的面積S的范圍為[10【點睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質(zhì)來解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下幾個方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍;③利用基本不等式求出參數(shù)的取值范圍;④利用函數(shù)的值域的求法,確定參數(shù)的取值范圍.20、(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計算.21、(1)證明見解析;(2).【解析】
(1)要證明面面,只需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 22602-2025戊唑醇原藥
- GB/T 18955-2025木工刀具安全銑刀、圓鋸片
- 90后成長期家庭理財方案-以朱先生家庭為例
- 2025年高職(市場營銷)渠道管理實務(wù)階段測試題及答案
- 2025年高職藥學(xué)(藥物分析)試題及答案
- 2025年中職石油工程技術(shù)(石油開采基礎(chǔ))試題及答案
- 2025年高職寵物醫(yī)療技術(shù)(貓咪外傷處理)試題及答案
- 2025年大學(xué)藝術(shù)教育(藝術(shù)教學(xué)基礎(chǔ))試題及答案
- 2025年大學(xué)醫(yī)學(xué)影像成像原理(醫(yī)學(xué)影像成像應(yīng)用)試題及答案
- 中職第二學(xué)年(商務(wù)英語)商務(wù)溝通2026年綜合測試題及答案
- 銀行行業(yè)公司銀行客戶經(jīng)理崗位招聘考試試卷及答案
- 2026天津市靜海區(qū)北師大實驗學(xué)校合同制教師招聘81人(僅限應(yīng)屆畢業(yè)生)考試筆試備考題庫及答案解析
- 2025陜西陜煤澄合礦業(yè)有限公司招聘570人參考筆試題庫及答案解析
- 2025年倉儲服務(wù)外包合同協(xié)議
- 2025遼寧沈陽金融商貿(mào)經(jīng)濟技術(shù)開發(fā)區(qū)管理委員會運營公司招聘60人考試歷年真題匯編帶答案解析
- 2025年刑法學(xué)考試試題及答案
- 廣東省汕頭市金平區(qū)2024-2025學(xué)年七年級上學(xué)期期末地理試題
- 2025年二手車交易市場發(fā)展可行性研究報告及總結(jié)分析
- 北京市交通運輸綜合執(zhí)法總隊軌道交通運營安全專職督查員招聘10人考試參考題庫附答案解析
- 2025年中國白酒行業(yè)發(fā)展研究報告
- 2025全國醫(yī)療應(yīng)急能力培訓(xùn)系列課程參考答案
評論
0/150
提交評論