2022-2023學年江蘇省邗江實驗校中考數(shù)學考前最后一卷含解析_第1頁
2022-2023學年江蘇省邗江實驗校中考數(shù)學考前最后一卷含解析_第2頁
2022-2023學年江蘇省邗江實驗校中考數(shù)學考前最后一卷含解析_第3頁
2022-2023學年江蘇省邗江實驗校中考數(shù)學考前最后一卷含解析_第4頁
2022-2023學年江蘇省邗江實驗校中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象可能是()A. B. C. D.2.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π3.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④4.學校小組名同學的身高(單位:)分別為:,,,,,則這組數(shù)據(jù)的中位數(shù)是().A. B. C. D.5.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人6.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)7.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④8.能說明命題“對于任何實數(shù)a,|a|>﹣a”是假命題的一個反例可以是()A.a=﹣2 B.a= C.a=1 D.a=9.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣310.如果,那么的值為()A.1 B.2 C. D.11.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣112.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規(guī)律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果不等式無解,則a的取值范圍是________14.已知二次函數(shù)的圖象開口向上,且經過原點,試寫出一個符合上述條件的二次函數(shù)的解析式:_____.(只需寫出一個)15.函數(shù)y=中,自變量x的取值范圍為_____.16.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.17.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結果保留兩位小數(shù))18.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.20.(6分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.21.(6分)如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.求證:△AED≌△EBC;當AB=6時,求CD的長.22.(8分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發(fā)箴言條數(shù)的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團員在這一個月內所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.23.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.24.(10分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積25.(10分)某手機經銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元求甲、乙型號手機每部進價為多少元?該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280元.為了促銷,公司決定每售出一臺乙型號手機,返還顧客現(xiàn)金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值26.(12分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?27.(12分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項圖象符合.故選C.考點:1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.2、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.3、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.4、C【解析】

根據(jù)中位數(shù)的定義進行解答【詳解】將5名同學的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數(shù)據(jù)的中位數(shù)是152.故選C.【點睛】本題主要考查中位數(shù),解題的關鍵是熟練掌握中位數(shù)的定義:一組數(shù)據(jù)按從小到大(或從大到?。┑捻樞蛞来闻帕校幵谥虚g位置的一個數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù))稱為中位數(shù).5、B【解析】

設男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據(jù)題意找出等量關系列出方程是解答本題的關鍵.6、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質、坐標與圖形性質、全等三角形的判定與性質;熟練掌握正方形的性質,證明三角形全等得出對應邊相等是解決問題的關鍵.7、B【解析】

由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質的運用,相似三角形的判定及性質的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質的運用,解答時根據(jù)比例關系設出未知數(shù)表示出線段的長度是關鍵.8、A【解析】

將各選項中所給a的值代入命題“對于任意實數(shù)a,”中驗證即可作出判斷.【詳解】(1)當時,,此時,∴當時,能說明命題“對于任意實數(shù)a,”是假命題,故可以選A;(2)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能B;(3)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能C;(4)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數(shù)的絕對值及相反數(shù)的方法”是解答本題的關鍵.9、A【解析】

根據(jù)一元二次方程根與系數(shù)的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=10、D【解析】

先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.11、A【解析】

根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關鍵是熟記數(shù)的0次冪為1.12、B【解析】

根據(jù)等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結論.【詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【點睛】本題考查了等腰三角形兩底角相等的性質,圖形的變化規(guī)律,依次求出相鄰的兩個角的差,得到分母成2的指數(shù)次冪變化,分子不變的規(guī)律是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、a≥1【解析】

將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【詳解】解得,∵無解,∴a≥1.故答案為a≥1.【點睛】本題考查了解一元一次不等式組,解題的關鍵是熟練的掌握解一元一次不等式組的運算法則.14、y=x2等【解析】分析:根據(jù)二次函數(shù)的圖象開口向上知道a>1,又二次函數(shù)的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數(shù)的圖象開口向上,∴a>1.∵二次函數(shù)的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,對考查學生所學函數(shù)的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數(shù)形結合的數(shù)學思想.15、x≠1.【解析】

該函數(shù)是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【詳解】根據(jù)題意得:x?1≠0,解得:x≠1.故答案為x≠1.【點睛】本題考查了函數(shù)自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.16、120【解析】

首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質等知識,解題的關鍵是熟練掌握基本知識17、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關鍵是弄懂BC的長就是⊙O的周長.18、.【解析】

連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質,勾股定理的應用等知識;綜合性比較強.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據(jù)全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結論;

(2)如圖2,根據(jù)菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質即可得到結論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點睛:考查了全等三角形的判定和性質、菱形的性質、旋轉的性質、等邊三角形的判定和性質,解題的關鍵是正確的作出輔助線.20、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.21、(1)證明見解析;(2)CD=3【解析】分析:(1)根據(jù)二直線平行同位角相等得出∠A=∠BEC,根據(jù)中點的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據(jù)全等三角形對應邊相等得出AD=EC,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AECD是平行四邊形∴CD=AE∵AB=6∴CD=AB=3點睛:本題考查全等三角形的判定和性質、平行四邊形的判定和性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考常考題型.22、(1)3,補圖詳見解析;(2)【解析】

(1)總人數(shù)=3÷它所占全體團員的百分比;發(fā)4條的人數(shù)=總人數(shù)-其余人數(shù)(2)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可【詳解】由扇形圖可以看到發(fā)箴言三條的有3名學生且占,故該班團員人數(shù)為:(人),則發(fā)4條箴言的人數(shù)為:(人),所以本月該班團員所發(fā)的箴言共(條),則平均所發(fā)箴言的條數(shù)是:(條).(2)畫樹形圖如下:由樹形圖可得,所選兩位同學恰好是一位男同學和一位女同學的概率為.【點睛】此題考查扇形統(tǒng)計圖,條形統(tǒng)計圖,列表法與樹狀圖法和扇形統(tǒng)計圖,看懂圖中數(shù)據(jù)是解題關鍵23、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.24、(1)證明見解析;(2).【解析】

(1)先根據(jù)直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據(jù)AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;

(2)根據(jù)等邊三角形的性質得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,

∴Rt△ABD中,DE=AB=AE,

Rt△ACD中,DF=AC=AF,

又∵AB=AC,點E、F分別是AB、AC的中點,

∴AE=AF,

∴AE=AF=DE=DF,

∴四邊形AEDF是菱形;

(2)如圖,

∵AB=AC=BC=10,

∴EF=5,AD=5,

∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.25、(1)甲種型號手機每部進價為1000元,乙種型號手機每部進價為800元;(2)共有四種方案;(3)當m=80時,w始終等于8000,取值與a無關【解析】

(1)設甲種型號手機每部進價為x元,乙種型號手機每部進價為y元根據(jù)題意列方程組求出x、y的值即可;(2)設購進甲種型號手機a部,這購進乙種型號手機(20-a)部,根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論