下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
5/5相像形——比例線段及相像知識點講解【知識點講解】
一,比例線段
1.線段的比:假如選用同一長度單位量得兩條線段a,b的長度分別是m,n,則就說這兩條線段的比是a:b=m:n,或?qū)懗?/p>
,其中a叫做比的前項;b叫做比的后項。
2.成比例線段:在四條線段中,假如其中兩條線段的比等于另外兩條線段的比,則這四條線段叫做成比例線段,簡稱比例線段.
3.比例的項:已知四條線段a,b,c,d,假如
,則a,b,c,d,叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段d還叫做a,b,c的第四比例項.
4.比例中項:假如作為比例線段的內(nèi)項是兩條相同的線段,即a:b=b:c或
,則線段b叫做線段a和c的比例中項.
比例的性質(zhì):
(1)比例的基本性質(zhì):
(2)反比性質(zhì):
(3)更比性質(zhì):
或
或
(4)合比性質(zhì):
(5)等比性質(zhì):
且
比例線段練習(xí)1,推斷下列四條線段是否成比例
①
a=2,b=,c=,d=2;
②
a=,b=3,
c=2,d=;
③
a=4,b=6,
c=5,d=10;
④
a=12,b=8,
c=15,d=10
2,已知:ad=bc
(1)
將其改寫成比例式;
(2)
寫出全部以a,d為內(nèi)項的比例式;
(3)
寫出訪b作為第四項比例項的比例式;
(4)若;寫出以c作第四比例項的比例式;
3
,計算.
已知:x∶y=5∶4,y∶z=3∶7.求x∶y∶z.
(2)已知:a,b,c為三角形三邊長,(a-c)
∶(c+b)
∶(c-b)=2∶7∶(-1),周長為24.求三邊長.
4
,在相同時刻的物高與影長成比例,假如一古塔在地面上影長為50m,同時,高為1.5m的測竿的影長為2.5m,則,古塔的高是多么米
5,,AB=10cm,AD=2cm,BC=7.2cm,E為BC中點.求EF,BF的長.
6.(1)已知:x:(x+1)=(1—x):3,求x。
(2)若,求
(3)
若,求
,
(4)若x2-3xy+2y2=0,求7.將比例式中的移到第四比例項,使比例式仍成立。
(1)a:b=:c
(2)
:a=b:c
(3)
a:=b:c
8:若,求
練習(xí):已知:,
求的值9:
若ABC三邊a:b:c=6:4:3,三邊上的高分別為h1,h2,h3,求h1:h2:h3的值。
10:已知兩地的實際距離是250米,畫在地圖上的距離(圖距)是5厘米,在這樣的地圖上,圖距a=8厘米的兩地A,B的實際距離是多少呢比例尺是多少?
12:操場上有一群學(xué)生在玩嬉戲,其中男生與女生的人數(shù)比例是3:2,后來又有6名女同學(xué)參與進來,此時女生與女生人數(shù)的比為5:4,求原來各有多少男生和女生?
比例線段拓展
1,比例線段
在四條線段中,假如其中兩條線段的比等于另外兩條線段的比,則這四條線段叫做成比例線段,簡稱比例線段。
設(shè)a,b,c,d為線段,假如a:b=c:d,b,c叫比例內(nèi)項,a,d叫比例外項,d叫做a,b,c的第四比例項;假如a:b=b:c,或b2=ac,則b叫a,c的比例中項。
黃金分割
如圖,把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,
點C叫做線段AB的黃金分割點,叫作黃金分割數(shù)(簡稱黃金數(shù)或黃金比)
留意:(1);
(2)一條線段有兩個黃金分割點。
3,平行線分三角形兩邊成比例
(1)基本領(lǐng)實:兩條直線被一組平行線所截,所得的對應(yīng)線段成比例。推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例。
推論:平行于三角形一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例。
如圖,則有【思索】畫圖說明平行于三角形一邊的其他狀況。
(2)三角形的重心
定義:三角形的重心是三角形三條中線的交點
與重心有關(guān)的比例線段:三角形的重心到一個頂點的距離,等于它到這個頂點對邊中點的距離的兩倍。
(3)三角形一邊平行線的判定定理:假如一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,則這條直線平行于三角形的第三邊。(三角形一邊平行線的判定定理)
(4)平行線分線段成比例定理:兩條直線被三條平行的直線所截,截得的對應(yīng)線段成比例。平行線等分線段定理:假如一組平行線在一條直線上截得的線段相等,則在其他直線上截得的線段也相等.
依據(jù)被截的兩條直線的位置關(guān)系,可以分五種圖形狀況(如圖1-圖5):
推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰.
在梯形ACFD中,AD//CF,AB=BC,則DE=EF
推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊.
在△ACF中,CFBE//,AB=BC
,則AE=EF
(5)三角形和梯形的中位線定理
三角形的中位線:連結(jié)三角形兩邊中點的線段叫做三角形的中位線。
三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半。
如圖,D,E分別為AB,AC的中點,則BC//DE,DE=BC
梯形的中位線:連結(jié)梯形兩腰中點的線段叫做梯形的中位線。
梯形的中位線定理:梯形的中位線平行于底邊,并且等于兩底和的一半。
梯形ABCD中,AD//BC,E,F分別是AB,CD的中點,則EF//AD//BC,EF=(AD+BC)
練習(xí)
如圖,已知△ABC中,DE∥BC,則下列等式中不成立的是(
)AD:AB=AE:AC
(B)AD:DB=AE:EC
(C)AD:DB=DE:BC
(D)AD:AB=DE:BC
如圖,DF∥AC,DE∥BC,下列各式中正確的是(
)
(B)
(C)
(D)
3,如圖,已知ΔABC中,DE∥BC,AD2=AB?AF,求證∠1=∠2
4,已知ΔABC中,AD為∠BAC的外角∠EAC的平分線,D為平分線與BC延長線交點,求證:
5,設(shè)點F在平行四邊形ABCD的邊CB的延長線上,DF交AB于點E,求證
AE:AD=AB:CF
【課后練習(xí)】
已知:
a:b:c=3:5:7且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公室員工培訓(xùn)效果反饋流程制度
- 銀行第二存款人制度
- 2026年及未來5年市場數(shù)據(jù)中國時尚培訓(xùn)行業(yè)市場深度研究及投資戰(zhàn)略規(guī)劃報告
- 配備足量的清潔工具(掃帚、拖把、清潔劑等)并建立工具領(lǐng)用登記制度
- 通信檔案三合一制度
- 綜合資質(zhì)考試題目及答案
- 運輸車隊司機獎罰制度
- 人體胚胎發(fā)育:哲學(xué)課件
- 前端頁面布局設(shè)計技巧及案例展示
- 財務(wù)支出制度
- 《四川省歷史建筑修繕技術(shù)標(biāo)準(zhǔn)》
- 初中語文詞性題目及答案
- 醫(yī)院電梯設(shè)備安全培訓(xùn)課件
- 排水系統(tǒng)運維人員培訓(xùn)方案
- 2023-2024學(xué)年五年級數(shù)學(xué)上冊-第三單元《小數(shù)除法列豎式計算》典型例題練習(xí)(含答案)
- 固廢和危廢管理培訓(xùn)知識課件
- (2025年標(biāo)準(zhǔn))sm調(diào)教協(xié)議書
- 蘇教版(2025)八年級上冊生物期末復(fù)習(xí)全冊知識點提綱(搶先版)
- 2025年應(yīng)急局在線考試題庫
- 交換氣球數(shù)學(xué)題目及答案
- 賓館房間臥具管理辦法
評論
0/150
提交評論