版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
大數(shù)據(jù)的虛擬化之路演講者:張君遲來自VMware虛擬化?現(xiàn)實。Source:Gartner“MagicQuadrantforx86ServerVirtualizationInfrastructure”byThomasJ.Bittman,GeorgeJ.Weiss,MarkA.Margevicius,PhilipDawson,June11,2012虛機部署的百分比2005200620072008200920102011201380%70%60%50%40%30%20%10%020152010年超越Empowerpeopleandorganizationsbyradically
simplifyingITthroughvirtualizationsoftware通過虛擬化軟件創(chuàng)新,徹底地簡化IT虛擬化絕對的領(lǐng)導(dǎo)者超過50萬家客戶超過5.5萬家合作伙伴約1.3萬名員工#3什么是虛擬化?–名詞解釋:當(dāng)初x86體系計算機硬件設(shè)計思想是單臺運行一個操作系統(tǒng)和一個應(yīng)用,造成大多數(shù)此類計算機的利用率偏低。虛擬化使得多個虛擬機能夠運行在同一個物理計算機上,每個虛擬機共享物理機的資源。虛擬機可以支持大多類型的操作系統(tǒng)和各式各樣的應(yīng)用,最終它們都是運行在同一臺物理計算機上。傳統(tǒng)架構(gòu)虛擬化架構(gòu)圖解……OSExchangeOperatingSystem虛擬化OSSAPERPOperatingSystem虛擬化OSFile/PrintOperatingSystem虛擬化OSOracleCRMOperatingSystem虛擬化虛擬化基礎(chǔ)架構(gòu)網(wǎng)絡(luò)交換池CPU池內(nèi)存池存儲池傳統(tǒng)視角虛擬化架構(gòu)動畫解……OracleCRMOperatingSystemSAPERPOperatingSystemFile/PrintOperatingSystemExchangeOperatingSystem虛擬化基礎(chǔ)架構(gòu)網(wǎng)絡(luò)交換池CPU池內(nèi)存池存儲池動畫解……交付的改變存儲計算網(wǎng)絡(luò)安全管理過去現(xiàn)在按
周、天計按分鐘、秒計為什么要大數(shù)據(jù)的虛擬化?設(shè)備越來越多!應(yīng)用越來越多!社交越來越多!數(shù)據(jù)能創(chuàng)造巨大價值,但保留和處理數(shù)據(jù)是有成本的……大數(shù)據(jù)時代Source:Gartner2020年,非結(jié)構(gòu)化數(shù)據(jù)10倍于結(jié)構(gòu)化數(shù)據(jù)的增長結(jié)構(gòu)化數(shù)據(jù)非結(jié)構(gòu)化數(shù)據(jù)花10倍的投入買這些硬件,無以為繼。換一種思路解決……大數(shù)據(jù)的虛擬化將大數(shù)據(jù)的工作負載運行或遷移到虛擬化的基礎(chǔ)環(huán)境中,繼承虛擬化的優(yōu)點。MPP
DBHadoopHBase虛擬化平臺
Hadoop虛擬化平臺
HBase
MPP監(jiān)控易于管理集群安裝和配置監(jiān)控硬件規(guī)劃和部署集群安裝和配置硬件規(guī)劃和部署虛擬化平臺集群整合共享資源,降低CAPEXΣ(Max)Max(Σ)效率對比物理集群虛擬化集群集群構(gòu)建采購服務(wù)器搭建數(shù)據(jù)中心復(fù)雜手工步驟無需精確了解業(yè)務(wù)對資源消耗中心化IT管理完全端到端自動化操作集群運維故障發(fā)生需要立即反饋高容錯自動故障轉(zhuǎn)移容量計劃需要為未來做好規(guī)劃,預(yù)留未使用資源只需為現(xiàn)在準備,所用即所需,無需預(yù)留資源增加計算/存儲能力需要重新采購和搭建服務(wù)器一鍵觸發(fā),自動向資源池申請資源擴展容量減少運維成本(OPEX)減少資產(chǎn)投入(CAPEX)高回報(ROI)17動態(tài)伸縮Hadoop-合理利用資源不同租戶部署各自的計算集群,共享分布式文件系統(tǒng)(HDFS)根據(jù)優(yōu)先級和可用資源動態(tài)Adhocdatamining動態(tài)資源控制數(shù)據(jù)層HDFSHostHostHostHostHostHostProductionrecommendationengine虛擬平臺計算層ComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVM測試集群生產(chǎn)集群ComputeVMJobTrackerJobTracker為什么要大數(shù)據(jù)的虛擬化?簡化操作共享基礎(chǔ)架構(gòu)利用現(xiàn)有投入vSphereBigDataExtensionsVMware的BigData解決方案-BDEVMwarevSphereBigDataExtensions(簡稱BDE)于2013年9月22日作為vSphere5.5的新功能正式上市。全新的BigDataExtensions件作為vSphere的插件發(fā)布。管理員可以直接從vCenter上部署、監(jiān)控和管理Hadoop集群。提高了Hadoop運行效率。幾分鐘內(nèi)部署大數(shù)據(jù)集群服務(wù)器準備操作系統(tǒng)安裝網(wǎng)絡(luò)配置大數(shù)據(jù)集群的安裝和配置手工部署流程自動化的界面部署流程一鍵即可橫向擴展集群輕松自定義配置集群Resourceconfiguration
ClusterSpecificationFile
"groups":[{"name":"master","roles":["hadoop_namenode","hadoop_jobtracker”],"storage":{"type":"SHARED”,sizeGB":20},"instance_type":MEDIUM,"instance_num":1,"ha":true},{"name":"worker","roles":["hadoop_datanode","hadoop_tasktracker"],"instance_type":SMALL,"instance_num":5,"ha":false
…Storageconfiguration
ChoiceofsharedstorageorLocaldiskHighavailabilityoption
#ofHadoopnodes
PredefinedSpecforStandardizationandEaseofConsumptionShipwithanumberofcommonclusterspecificationfilesPredefinespecssuitableforvaryingneedsoftheirusersEaseofconsumption–Itjustworks!StandardizationDeveloper3HadoopnodesCloudera,Pivotal
MapRSmallVMLocalstorageNoHA…DataScientist5HadoopnodesCloudera,PivotalHive,PigMediumVMHA…Highpriority50HadoopnodesClouderaHive,PigLargeVMHA…………YourChoiceofHadoopDistributionsandToolsCommunityProjectsDistributionsFlexibilitytochooseandtryoutmajordistributionsSupportformultipleprojectsOpenarchitecturetowelcomeindustryparticipationContributingHadoopVirtualizationExtensions(HVE)toopensourcecommunityAutomationofHadoopClusterLifecycleManagementDeployCustomizeLoaddataExecutejobsTuneconfigurationScaling…vSphereBigDataExtensionsChallengesofRunningHadoopinEnterprisesProductionTestExperimentationDeptA:recommendationengineDeptB:adtargetingProductionTestExperimentationLogfilesSocialdataTransactiondataHistoricalcustbehaviorPainPoints:ClustersprawlingRedundantcommondatainseparateclustersInefficientuseofresourcs,someclusterscouldberunningatcapacitywhileotherclustersaresittingidleNoSQLRealtimeSQL…Onthehorizon…Whatifyoucan…Experimentation
ProductionrecommendationengineProductionAdTargetingTest/DevProductionTestProductionTestExperimentationRecommendationengineAdtargetingExperimentationOnephysicalplatformtosupportmultiplevirtualbigdataclustersToday’sChallengesonHadoopInfrastructureFixedcomputeandstorageleadstolowutilizationandinflexibilityComputeandstoragelinkedtogetherwithfixedratiobasedonhardwarespecNotalljobsarecreatedequal(puteintensive)InflexibleinfrastructureleadstowasteToolittlecomputepowerslowprocessingToomuchcomputepowersittingidleProblemcompoundswithlargerclustersSowhathappens?Yahoo-averageCPUutilizationofHadoopclustersis<15%Twitter–usedifferenthardwareforclusters,expensivewaytoachievedefficiencyServerCompute
NodeData
NodeServerCompute
NodeData
NodeServerCompute
NodeData
NodeServerCompute
NodeStorage
NodeServerCompute
NodeGettingmoreoutofyourinfrastructureDecouplethelinkagebetweencomputeandstorageStatelesscomputecanelasticgrowandshrinkDatalocalityispreserved,placethecomputewheredataresidesExtracomputecapacitycanbeusedforotherworkloadsVMStorage
NodeVMComputelayerComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMStorageVMStorageVMStorageVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMStorageVMStorageVMStorageVMComputeVMStorageVMStoragelayerRunotherworkloadsRunHadoopStorageElastic,Multi-tenantHadoopwithVirtualizationComputeCombinedStorage/ComputeStorageT1T2VMVMVMVMVMVMUnmodifiedHadoop
nodeinaVMVMlifecycle
determined
byDatanodeLimitedelasticitySeparateComputefrom
StorageSeparatecompute
fromdataStatelesscomputeElasticcomputeSeparateVirtualComputeClusters
pertenantSeparatevirtualcomputeComputeclusterpertenantStrongerVM-gradesecurity
andresourceisolationHadoopNodeUsecase1:ElasticHadoopwithTierredSLAProductionworkloadshashighpriorityExperimentationworkloadshaslowerpriorityExperimentationDynamicresourcepoolDatalayerProductionrecommendationengineComputelayerComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMExperimentationProductionComputeVMExperimentation
MapreduceProduction
MapreduceVMwarevSphere+SerengetiUsecase2:ElasticHadoopforMultipledepartmentsCentralizeITisofferingHadooptomultipledepartmentsExperimentationDynamicresourcepoolDatalayerProductionrecommendationengineComputelayerComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMDepartment1Department2ComputeVMMapreduceMapreduceVMwarevSphere+SerengetiUsecase3:ElasticBigDataHadoopecosystemevolvingquicklytoincludemoreandmorecomputingengines(Hbase,streaming,interactivesqletc.)ExperimentationDynamicresourcepoolDatalayerProductionrecommendationengineComputelayerComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMComputeVMHbaseRPHadoopResourcePoolComputeVMHbaseMapreduceVMwarevSphere+SerengetiHDFS
(HadoopDistributedFileSystem)HBase(Key-Valuestore)MapReduce(JobScheduling/ExecutionSystem)Pig(DataFlow)Hive(SQL)BIReportingETLToolsManagementServerZookeepr(Coordination)HCatalogRDBMSNamenodeJobtrackerHiveMetaDBHcatalogMDBServervSphereHAisbattle-testedhighavailabilitytechnologySinglemechanismtoachieveHAfortheentireHadoopstackOneclicktoenableHAand/orFTAchieveHAfortheEntireHadoopStackHybridstoragemodeltogetthebestofbothworldsMasternodes:Namenode,jobtrackeretc.onsharedstorageLeveragevSpherevMotion,HAandFTSlavenodesTasktracker/datanodeonlocalstorageLowercost,scalablebandwidthLocalStorageSharedStorageLeveragingIsilonasExternalHDFSTimetoresults:AnalysisofdatainplaceLowerriskusingvSpherewithIsilonScalestorageandcomputeindependentlyDataLayer–HadooponIsilonElasticVirtualComputeLayerProactivemonitoringwithvCOPsProactivelymonitoringthroughVCOPsGaincomprehensivevisibilityElimin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025航空航天零部件采購商供需關(guān)系變化趨勢與供應(yīng)鏈穩(wěn)定性評估報告
- 2025航空航天粘合材料行業(yè)供需分析投資評估規(guī)劃發(fā)展成為
- 民營企業(yè)員工職業(yè)發(fā)展規(guī)劃方案
- 小學(xué)英語語音專項訓(xùn)練課程資料
- 新員工轉(zhuǎn)正考核標準及流程說明
- 現(xiàn)代書法藝術(shù)教學(xué)設(shè)計與課堂實錄
- 市政污水處理廠建設(shè)詳細施工方案
- 高三英語階段性考試題庫匯編
- 消防演習(xí)方案及實施細則
- 企業(yè)網(wǎng)絡(luò)營銷策略與客戶數(shù)據(jù)分析
- 電廠標識系統(tǒng)KKS編碼說明pdf
- 2023年郴州職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及答案詳解1套
- 完整版醫(yī)療器械基礎(chǔ)知識培訓(xùn)考試試題及答案
- 《無人機地面站與任務(wù)規(guī)劃》 課件全套 第1-9章 概論 -無人機內(nèi)業(yè)數(shù)據(jù)整與處理
- 屋頂光伏承重安全檢測鑒定
- 長輸管道項目驗收總結(jié)與報告
- 2025年高考數(shù)學(xué)真題分類匯編專題03 三角函數(shù)(全國)(解析版)
- 中國石化項目管理辦法
- 國家開放大學(xué)11839行政領(lǐng)導(dǎo)學(xué)(統(tǒng)設(shè)課)期末考試復(fù)習(xí)題庫及答案
- 人民群眾是歷史的創(chuàng)造者
- 錘狀指帶線錨釘縫合技術(shù)
評論
0/150
提交評論