版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年大連楓葉職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動(dòng)點(diǎn),F(xiàn)1、F2為橢圓焦點(diǎn),延長(zhǎng)F2M至點(diǎn)B,則ρF1MB的外角的平分線為MN,過點(diǎn)F1作
F1Q⊥MN,垂足為Q,當(dāng)點(diǎn)M在橢圓上運(yùn)動(dòng)時(shí),則點(diǎn)Q的軌跡方程是______.答案:點(diǎn)F1關(guān)于∠F1MF2的外角平分線MQ的對(duì)稱點(diǎn)N在直線F1M的延長(zhǎng)線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長(zhǎng)軸長(zhǎng)),又OQ是△F2F1N的中位線,故|OQ|=a,點(diǎn)Q的軌跡是以原點(diǎn)為圓心,a為半徑的圓,點(diǎn)Q的軌跡方程是x2+y2=a2故為:x2+y2=a22.下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是()
A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺(tái)的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D3.若向量,則這兩個(gè)向量的位置關(guān)系是___________。答案:垂直4.已知直線l過點(diǎn)P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+
yb=1,點(diǎn)P(2,1)代入得2a+1b=1≥22ab,∴ab≥8
(當(dāng)且僅當(dāng)a=4,b=2時(shí),等號(hào)成立),故三角形OAB面積S=12
ab≥4,故為4.5.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.6.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設(shè)直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C7.把4名男生和4名女生排成一排,女生要排在一起,不同排法的種數(shù)為()
A.A88
B.A55A44
C.A44A44
D.A85答案:B8.(難線性運(yùn)算、坐標(biāo)運(yùn)算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:設(shè)A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),則M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,當(dāng)AP與PC同向,BP與PD同向時(shí)取等號(hào),設(shè)PC=λAP,PD=μBP,則1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,當(dāng)x=y=12時(shí),M的最小值為22.9.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點(diǎn),建立適當(dāng)?shù)淖鴺?biāo)系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個(gè)法向量.解析:以D為原點(diǎn),DA、DC、DD1所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系.(如圖所示).設(shè)棱長(zhǎng)為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設(shè)平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個(gè)法向量.10.以直線x+3=0為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程是______.答案:由題意,拋物線的焦點(diǎn)在x軸上,焦點(diǎn)坐標(biāo)為(3,0),∴拋物線的標(biāo)準(zhǔn)方程是y2=12x故為:y2=12x11.已知方程x2-6x+a=0的兩個(gè)不等實(shí)根均大于2,則實(shí)數(shù)a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D12.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).13.在平面直角坐標(biāo)系xOy中,已知拋物線關(guān)于x軸對(duì)稱,頂點(diǎn)在原點(diǎn)O,且過點(diǎn)P(2,4),則該拋物線的方程是______.答案:設(shè)所求拋物線方程為y2=ax,依題意42=2a∴a=8,故所求為y2=8x.故為:y2=8x14.已知a,b是非零向量,且a,b夾角為π3,則向量p=a丨a丨+b丨b丨的模為______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|
|b|cosπ3=12|a|
|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故為3.15.將(x+y+z)5展開合并同類項(xiàng)后共有______項(xiàng),其中x3yz項(xiàng)的系數(shù)是______.答案:將(x+y+z)5展開合并同類項(xiàng)后,每一項(xiàng)都是m?xa?yb?zc
的形式,且a+b+c=5,其中,m是實(shí)數(shù),a、b、c∈N,構(gòu)造8個(gè)完全一樣的小球模型,分成3組,每組至少一個(gè),共有分法C27種,每一組中都去掉一個(gè)小球的數(shù)目分別作為(x+y+z)5的展開式中每一項(xiàng)中x,y,z各字母的次數(shù),小球分組模型與各項(xiàng)的次數(shù)是一一對(duì)應(yīng)的.故將(x+y+z)5展開合并同類項(xiàng)后共有C27=21項(xiàng).把(x+y+z)5的展開式看成5個(gè)因式(x+y+z)的乘積形式.從中任意選3個(gè)因式,這3個(gè)因式都取x,另外的2個(gè)因式分別取y、z,相乘即得含x3yz項(xiàng),故含x3yz項(xiàng)的系數(shù)為C35=20,故為21;20.16.在邊長(zhǎng)為1的正方形中,有一個(gè)封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)的撒入100粒豆子,恰有60粒落在陰影區(qū)域內(nèi),那么陰影區(qū)域的面積為______.
答案:設(shè)陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.17.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(diǎn)(3,8),求f(4)=______.答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.18.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()
A.
B.
C.
D.答案:D19.已知拋物線x2=4y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說(shuō)明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.20.當(dāng)a≠0時(shí),y=ax+b和y=bax的圖象只可能是()
A.
B.
C.
D.
答案:A21.拋物線y2=4x的焦點(diǎn)坐標(biāo)是()
A.(4,0)
B.(2,0)
C.(1,0)
D.答案:C22.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn),故為:平行投影的投影線互相平行,而中心投影的投影線交于一點(diǎn)23.若向量a=(4,2,-4),b=(6,-3,2),則(2a-3b)?(a+2b)=______.答案:∵2a-3b=(-10,13,-14),a+2b=(16,-4,0)∴(2a-3b)?(a+2b)=-10×16+13×(-4)=-212故為-21224.位于直角坐標(biāo)原點(diǎn)的一個(gè)質(zhì)點(diǎn)P按下列規(guī)則移動(dòng):質(zhì)點(diǎn)每次移動(dòng)一個(gè)單位,移動(dòng)的方向向左或向右,并且向左移動(dòng)的概率為,向右移動(dòng)的概率為,則質(zhì)點(diǎn)P移動(dòng)五次后位于點(diǎn)(1,0)的概率是()
A.
B.
C.
D.答案:D25.某項(xiàng)選拔共有四輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考核,否則
即被淘汰.已知某選手能正確回答第一、二、三、四輪的問題的概率分別為、、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第四輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率.
(注:本小題結(jié)果可用分?jǐn)?shù)表示)答案:(1)該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.解析:(Ⅰ)記“該選手能正確回答第輪的問題”的事件為,則,,,,該選手進(jìn)入第四輪才被淘汰的概率.(Ⅱ)該選手至多進(jìn)入第三輪考核的概率.26.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M=.k001.,N=.0110.,點(diǎn)A、B、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,
(1)求k的值.
(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說(shuō)明理由.答案:(1)由題設(shè)得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計(jì)算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設(shè)知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設(shè)B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當(dāng)k≠0時(shí),上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當(dāng)k≠0時(shí),上式不可能成立,MN不可逆,(11分).27.下列敘述中:
①變量間關(guān)系有函數(shù)關(guān)系,還有相關(guān)關(guān)系;②回歸函數(shù)即用函數(shù)關(guān)系近似地描述相關(guān)關(guān)系;③=x1+x2+…+xn;④線性回歸方程一定可以近似地表示所有相關(guān)關(guān)系.其中正確的有()
A.①②③
B.①②④
C.①③
D.③④答案:A28.已知a=(1,0),b=(m,m)(m>0),則<a,b>=______.答案:∵b=(m,m)(m>0),∴b與第一象限的角平分線同向,且由原點(diǎn)指向遠(yuǎn)處,而a=(1,0)同橫軸的正方向同向,∴<a,b>=45°,故為:45°29.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是()
A.有99%的人認(rèn)為該欄目?jī)?yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D30.一個(gè)盒子中裝有4張卡片,上面分別寫著四個(gè)函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個(gè)函數(shù)必須是一個(gè)奇函數(shù)、一個(gè)偶函數(shù).而所給的4個(gè)函數(shù)中,有2個(gè)奇函數(shù)、2個(gè)偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.31.下列關(guān)于算法的說(shuō)法中正確的個(gè)數(shù)是()
①求解某一類問題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對(duì)于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說(shuō)法中正確的個(gè)數(shù)是3.故選C.32.若圓x2+y2=9上每個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來(lái)的,則所得到的曲線的方程是()
A.
B.
C.
D.答案:C33.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1
可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,34.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設(shè)兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.35.“cosα=12”是“α=π3”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:∵“coa=12”?“a=π3+2kπ,k∈Z,或a=53π+2kπ,k∈Z”,“a=π3”?“coa=12”.故選D.36.已知某人在某種條件下射擊命中的概率是,他連續(xù)射擊兩次,其中恰有一次射中的概率是()
A.
B.
C.
D.答案:C37.過點(diǎn)(2,4)作直線與拋物線y2=8x只有一個(gè)公共點(diǎn),這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B38.已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫出四個(gè)過球心的平面截球與正三棱錐所得的圖形,如圖所示,則()A.以上四個(gè)圖形都是正確的B.只有(2)(4)是正確的C.只有(4)是錯(cuò)誤的D.只有(1)(2)是正確的答案:(1)當(dāng)平行于三棱錐一底面,過球心的截面如(1)圖所示;(2)過三棱錐的一條棱和圓心所得截面如(2)圖所示;(3)過三棱錐的一個(gè)頂點(diǎn)(不過棱)和球心所得截面如(3)圖所示;(4)棱長(zhǎng)都相等的正三棱錐和球心不可能在同一個(gè)面上,所以(4)是錯(cuò)誤的.故選C.39.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?
(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線,說(shuō)明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=240.已知圓C:x2+y2-4y-6y+12=0,求:
(1)過點(diǎn)A(3,5)的圓的切線方程;
(2)在兩條坐標(biāo)軸上截距相等的圓的切線方程.答案:(l)設(shè)過點(diǎn)A(3,5)的直線?的方程為y-5=k(x-3).因?yàn)橹本€?與⊙C相切,而圓心為C(2,3),則|2k-3-3k+5|k2+1=1,解得k=34所以切線方程為y-5=34(x-3),即3x-4y+11=0.由于過圓外一點(diǎn)A與圓相切的直線有兩條,因此另一條切線方程為x=3.(2)因?yàn)樵c(diǎn)在圓外,所以設(shè)在兩坐標(biāo)軸上截距相等的直線方程x+y=a或y=kx.由直線與圓相切得,|2+3-a|2=1或|2k-3|k2+1=1,解得a=5士2,k=6±223故所求的切線方程為x+y=5士2或y=6±223x.41.設(shè)a,b,c都是正數(shù),求證:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:證明略解析:證明
(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.42.參數(shù)方程(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C43.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對(duì)于定義域中的一切實(shí)數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.44.給出以下四個(gè)對(duì)象,其中能構(gòu)成集合的有()
①教2011屆高一的年輕教師;
②你所在班中身高超過1.70米的同學(xué);
③2010年廣州亞運(yùn)會(huì)的比賽項(xiàng)目;
④1,3,5.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)答案:解析:因?yàn)槲匆?guī)定年輕的標(biāo)準(zhǔn),所以①不能構(gòu)成集合;由于②③④中的對(duì)象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.45.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M(jìn)={0,1},N={2x+1|x∈M},當(dāng)x=0時(shí),2x+1=1;當(dāng)x=1時(shí),2x+1=3,∴N={1,3}則M∩N={1}.故選A.46.已知過點(diǎn)A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()
A.0
B.-8
C.2
D.10答案:B47.已知向量a、b的夾角為60°,且|a|=2,|b|=1,則|a+2b|=______;向量a與向量a+2b的夾角的大小為______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,設(shè)向量a與向量a+2b的夾角的大小為θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故為23,30°.48.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A49.(文)將圖所示的一個(gè)直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個(gè)圖形中的(
)
A.
B.
C.
D.
答案:B50.如圖,以1×3方格紙中的格點(diǎn)為起點(diǎn)和終點(diǎn)的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個(gè)模,進(jìn)而分析方向,正方形的邊對(duì)應(yīng)的向量共有四個(gè)方向,邊長(zhǎng)為1的正方形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×2的矩形的對(duì)角線對(duì)應(yīng)的向量共四個(gè)方向;1×3的矩形對(duì)角線對(duì)應(yīng)的向量共有四個(gè)方向共有16個(gè)方向第2卷一.綜合題(共50題)1.指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,16)則a的值是()A.14B.12C.2D.4答案:設(shè)指數(shù)函數(shù)為y=ax(a>0且a≠1)將(2,16)代入得16=a2解得a=4所以y=4x故選D.2.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()
A.(-∞,-1]∪[4,+∞)
B.(-∞,-2]∪[5,+∞)
C.[1,2]
D.(-∞,1]∪[2,+∞)答案:A3.已知直線過點(diǎn)A(2,0),且平行于y軸,方程:|x|=2,則(
)
A.l是方程|x|=2的曲線
B.|x|=2是l的方程
C.l上每一點(diǎn)的坐標(biāo)都是方程|x|=2的解
D.以方程|x|=2的解(x,y)為坐標(biāo)的點(diǎn)都在l上答案:C4.(本題10分)設(shè)函數(shù)的定義域?yàn)锳,的定義域?yàn)锽.(1)求A;
(2)若,求實(shí)數(shù)a的取值范圍答案:(1);(2)。解析:略5.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.6.若實(shí)數(shù)X、少滿足,則的范圍是()
A.[0,4]
B.(0,4)
C.(-∝,0]U[4,+∝)
D.(-∝,0)U(4,+∝))答案:D7.已知點(diǎn)M(a,b)在直線3x+4y=15上,則a2+b2的最小值為______.答案:a2+b2的幾何意義是到原點(diǎn)的距離,它的最小值轉(zhuǎn)化為原點(diǎn)到直線3x+4y=15的距離:d=155=3.故為3.8.安排6名演員的演出順序時(shí),要求演員甲不第一個(gè)出場(chǎng),也不最后一個(gè)出場(chǎng),則不同的安排方法種數(shù)是()
A.120
B.240
C.480
D.720答案:C9.有五條線段長(zhǎng)度分別為1、3、5、7、9,從這5條線段中任取3條,則所取3條線段能構(gòu)成一個(gè)三角形的概率為()A.110B.310C.12D.710答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從五條線段中取三條共有C53種結(jié)果,而滿足條件的事件是3、5、7;3、7、9;5、7、9,三種結(jié)果,∴由古典概型公式得到P=3C35=310,故選B.10.若隨機(jī)變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D11.設(shè)求證答案:證明略解析:左邊-右邊===
=
∴原不等式成立。證法二:左邊>0,右邊>0?!嘣坏仁匠闪?。12.數(shù)學(xué)歸納法證明“2n+1≥n2+n+2(n∈N*)”時(shí),第一步驗(yàn)證的表達(dá)式為______.答案:根據(jù)數(shù)學(xué)歸納法的步驟,首先要驗(yàn)證證明當(dāng)n取第一個(gè)值時(shí)命題成立;結(jié)合本題,要驗(yàn)證n=1時(shí),2n+1≥n2+n+2的成立;即21+1≥12+1+2成立;故為:21+1≥12+1+2(22≥4或4≥4也算對(duì)).13.如圖,一個(gè)空間幾何體的正視圖、側(cè)視圖、俯視圖為全等的等腰直角三角形,如果直角三角形的直角邊長(zhǎng)為2,那么
這個(gè)幾何體的體積為()A.13B.23C.43D.2答案:根據(jù)三視圖,可知該幾何體是三棱錐,右圖為該三棱錐的直觀圖,三棱錐的底面是一個(gè)腰長(zhǎng)是2的等腰直角三角形,∴底面的面積是12×2×2=2垂直于底面的側(cè)棱長(zhǎng)是2,即高為2,∴三棱錐的體積是13×2×2=43故選C.14.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1>k2>k3
B.k3>k2>k1
C.k2>k1>k3
D.k3>k1>k2
答案:C15.已知向量,,則“=λ,λ∈R”成立的必要不充分條件是()
A.+=
B.與方向相同
C.⊥
D.∥答案:D16.數(shù)列{an}滿足a1=1且an+1=(1+1n2+n)an+12n(n≥1).
(Ⅰ)用數(shù)學(xué)歸納法證明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x對(duì)x>0成立,證明:an<e2(n≥1),其中無(wú)理數(shù)e=2.71828….答案:(Ⅰ)證明:①當(dāng)n=2時(shí),a2=2≥2,不等式成立.②假設(shè)當(dāng)n=k(k≥2)時(shí)不等式成立,即ak≥2(k≥2),那么ak+1=(1+1k(k+1))ak+12k≥2.這就是說(shuō),當(dāng)n=k+1時(shí)不等式成立.根據(jù)(1)、(2)可知:ak≥2對(duì)所有n≥2成立.(Ⅱ)由遞推公式及(Ⅰ)的結(jié)論有an+1=(1+1n2+n)an+12n≤(1+1n2+n+12n)an(n≥1)兩邊取對(duì)數(shù)并利用已知不等式得lnan+1≤ln(1+1n2+n+12n)+lnan≤lnan+1n2+n+12n故lnan+1-lnan≤1n(n+1)+12n(n≥1).上式從1到n-1求和可得lnan-lna1≤11×2+12×3+…+1(n-1)n+12+122+…+12n-1=1-12+(12-13)+…+1n-1-1n+12?1-12n1-12=1-1n+1-12n<2即lnan<2,故an<e2(n≥1).17.已知200輛汽車通過某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時(shí)速在[60,70]的汽車大約有200×0.4=80故選B.18.已知函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小,則實(shí)數(shù)a的取值范圍______.答案:∵函數(shù)f(x)=x2+(a2-1)x+(a-2)的一個(gè)零點(diǎn)比1大,一個(gè)零點(diǎn)比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實(shí)數(shù)a的取值范圍為(-2,1)故為:(-2,1)19.甲射擊運(yùn)動(dòng)員擊中目標(biāo)為事件A,乙射擊運(yùn)動(dòng)員擊中目標(biāo)為事件B,則事件A,B為()
A.互斥事件
B.獨(dú)立事件
C.對(duì)立事件
D.不相互獨(dú)立事件答案:B20.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得21.參數(shù)方程,(θ為參數(shù))表示的曲線是()
A.直線
B.圓
C.橢圓
D.拋物線答案:C22.已知拋物線x2=4y上的點(diǎn)p到焦點(diǎn)的距離是10,則p點(diǎn)坐標(biāo)是
______.答案:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1)根據(jù)拋物線定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點(diǎn)坐標(biāo)是(±6,9)故為:(±6,9)23.若一點(diǎn)P的極坐標(biāo)是(r,θ),則它的直角坐標(biāo)如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點(diǎn)P的極坐標(biāo)是(r,θ)的直角坐標(biāo)為:(rcosθ,rsinθ).24.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對(duì)臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號(hào)是______
(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預(yù)防感冒的有效率為95%
(4)這種血清預(yù)防感冒的有效率為5%答案:查對(duì)臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個(gè)使用血清的人中一個(gè)患感冒的人也沒有”的可能.故為:(1).25.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).26.在對(duì)兩個(gè)變量x,y進(jìn)行線性回歸分析時(shí),有下列步驟:
①對(duì)所求出的回歸直線方程作出解釋;
②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
③求線性回歸方程;
④求相關(guān)系數(shù);
⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.
如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()
A.①②⑤③④
B.③②④⑤①
C.②④③①⑤
D.②⑤④③①答案:D27.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證
≥,只要證
≥,即證
≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時(shí),常通過分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對(duì)解決實(shí)際問題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.28.一張紙上畫有一個(gè)半徑為R的圓O和圓內(nèi)一個(gè)定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A′剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點(diǎn)時(shí),求所有折痕所在直線上點(diǎn)的集合.答案:對(duì)于⊙O上任意一點(diǎn)A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點(diǎn)P,則OP+PA=OA′=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A′取遍圓周上所有點(diǎn)時(shí),點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長(zhǎng)軸的橢圓C.而MN上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA′>OA′,故點(diǎn)Q在橢圓C外,即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對(duì)于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°
當(dāng)S在⊙O外時(shí),由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°
當(dāng)S在⊙O內(nèi)時(shí)(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S′),取過S′的半徑OD,則由點(diǎn)S′在橢圓C外,故OS′+S′A≥R(橢圓的長(zhǎng)軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.29.已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點(diǎn)M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.30.已知函數(shù)f(x)=x21+x2.
(1)求f(2)與f(12),f(3)與f(13);
(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;
(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分31.如圖,△ABC中,CD=2DB,設(shè)AD=mAB+nAC(m,n為實(shí)數(shù)),則m+n=______.答案:∵CD=2DB,∴B、C、D三點(diǎn)共線,由三點(diǎn)共線的向量表示,我們易得AD=23AB+13AC,由平面向量基本定理,我們易得m=23,n=13,∴m+n=1故為:132.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個(gè),現(xiàn)從袋中任意取出3個(gè)小球,假設(shè)每個(gè)小球被取出的可能性都相等.
(Ⅰ)求取出的3個(gè)小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同的概率;
(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個(gè)小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個(gè)小球上的數(shù)字恰有2個(gè)相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個(gè)小球上的最大數(shù)字,則X≥4包含取出的3個(gè)小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個(gè)小球上的最大數(shù)字為4時(shí),P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個(gè)小球上的最大數(shù)字為5時(shí),P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.33.執(zhí)行如圖所示的程序框圖,輸出的M的值為()
A.17
B.53
C.161
D.485
答案:C34.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對(duì)實(shí)數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對(duì)平面a中的任一向量a,使a=λ1e1+λ2e2的實(shí)數(shù)λ1,λ2有無(wú)數(shù)對(duì)答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個(gè)向量,∴實(shí)數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時(shí)實(shí)數(shù)λ1,λ2有且只有一對(duì),而對(duì)實(shí)數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.35.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.36.設(shè)隨機(jī)變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C37.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組
x-
y=1x+y=3解之得x=2y=1故為x=2y=138.滿足條件|z|=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是()
A.一條直線
B.兩條直線
C.圓
D.橢圓答案:C39.|a|=2,|b|=3,|a+b|=4,則a與b的夾角是______.答案:∵|a+b|=4,∴a2+2a?b+b2=16∴a?b=32∴cos<a,b>=a?b|.a|×|.b|=322×3=14∵<a,b>∈[0°,180°]∴.a與.b的夾角為arccos14故為arccos1440.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C41.如圖所示,已知點(diǎn)P為菱形ABCD外一點(diǎn),且PA⊥面ABCD,PA=AD=AC,點(diǎn)F為PC中點(diǎn),則二面角CBFD的正切值為()
A.
B.
C.
D.
答案:D42.若方程sin2x+4sinx+m=0有實(shí)數(shù)解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D43.一個(gè)樣本a,99,b,101,c中五個(gè)數(shù)恰成等差數(shù)列,則這個(gè)樣本的極差與標(biāo)準(zhǔn)差分別為(
)。答案:4;44.兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為()
A.4
B.
C.
D.答案:D45.已知x與y之間的一組數(shù)據(jù)是()
x0123y2468則y與x的線性回歸方程y=bx+a必過點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,5)∵線性回歸直線一定過樣本中心點(diǎn),∴y與x的線性回歸方程y=bx+a必過點(diǎn)(1.5,5)故選D.46.4個(gè)人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計(jì)數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:947.過直線y=x上的一點(diǎn)作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,當(dāng)直線l1,l2關(guān)于y=x對(duì)稱時(shí),它們之間的夾角為()
A.30°
B.45°
C.60°
D.90°答案:C48.北京期貨商會(huì)組織結(jié)構(gòu)設(shè)置如下:
(1)會(huì)員代表大會(huì)下設(shè)監(jiān)事會(huì)、會(huì)長(zhǎng)辦公會(huì),而會(huì)員代表大會(huì)于會(huì)長(zhǎng)辦公會(huì)共轄理事會(huì);
(2)會(huì)長(zhǎng)辦公會(huì)設(shè)會(huì)長(zhǎng),會(huì)長(zhǎng)管理秘書長(zhǎng);
(3)秘書長(zhǎng)具體分管:秘書處、規(guī)范自律委員會(huì)、服務(wù)推廣委員會(huì)、發(fā)展創(chuàng)新委員會(huì).
根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:49.方程x2+ky2=2表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點(diǎn)在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<150.袋中有4個(gè)形狀大小一樣的球,編號(hào)分別為1,2,3,4,從中任取2個(gè)球,則這2個(gè)球的編號(hào)之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個(gè)球中取出2個(gè),其編號(hào)的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號(hào)之和為偶數(shù)的有(1,3),(2,4),共2種;則2個(gè)球的編號(hào)之和為偶數(shù)的概率P=26=13;故選D.第3卷一.綜合題(共50題)1.雙曲線C的焦點(diǎn)在x軸上,離心率e=2,且經(jīng)過點(diǎn)P(2,3),則雙曲線C的標(biāo)準(zhǔn)方程是______.答案:設(shè)雙曲線C的標(biāo)準(zhǔn)方程x2a2-y2b2=1,∵經(jīng)過點(diǎn)P(2,3),∴2a2-3b2=1
①,又∵e=2=a2+b2a
②,由①②聯(lián)立方程組并解得
a2=1,b2=3,雙曲線C的標(biāo)準(zhǔn)方程是x2-y23=1,故為:x2-y23=1.2.應(yīng)用反證法推出矛盾的推導(dǎo)過程中要把下列哪些作為條件使用()
①結(jié)論相反的判斷,即假設(shè)
②原命題的條件
③公理、定理、定義等
④原結(jié)論
A.①②
B.①②④
C.①②③
D.②③答案:C3.若函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),那么()A.f(x)是增函數(shù)B.f(x)沒有單調(diào)遞增區(qū)間C.f(x)沒有單調(diào)遞減區(qū)間D.f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間答案:根據(jù)函數(shù)f(x)對(duì)任意實(shí)數(shù)x都有f(x)<f(x+1),畫出一個(gè)滿足條件的函數(shù)圖象如右圖所示;根據(jù)圖象可知f(x)可能存在單調(diào)遞增區(qū)間,也可能存在單調(diào)遞減區(qū)間故選D.4.直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量,則a=______.答案:∵直線ax+2y+3=0和直線2x+ay-1=0具有相同的方向向量∴兩條直線互相平行,可得a2=2a≠3-1,解之得a=±2故為:±25.若圖中的直線l1,l2,l3的斜率分別為k1,k2,k3,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D6.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為______.答案:因?yàn)锳(0,4)和點(diǎn)B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-27.如圖,在△ABC中,D是AC的中點(diǎn),E是BD的中點(diǎn),AE交BC于F,則的值等于()
A.
B.
C.
D.
答案:A8.已知一物體在共點(diǎn)力F1=(lg2,lg2),F(xiàn)2=(lg5,lg2)的作用下產(chǎn)生位移S=(2lg5,1),則這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點(diǎn)力的作用下產(chǎn)生位移S=(2lg5,1)∴這兩個(gè)共點(diǎn)力對(duì)物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B9.已知二項(xiàng)分布滿足X~B(6,23),則P(X=2)=______,EX=______.答案:∵X服從二項(xiàng)分布X~B(6,23)∴P(X=2)=C26(13)4(23)2=20243∵隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(6,23),∴期望Eξ=np=6×23=4故為:20243;410.正方體的內(nèi)切球和外接球的半徑之比為
A.:1
B.:2
C.2:
D.:3答案:D11.已知x與y之間的一組數(shù)據(jù):
x
0
1
2
3
y
2
4
6
8
則y與x的線性回歸方程為y=bx+a必過點(diǎn)()
A.(1.5,4)
B.(1.5,5)
C.(1,5)
D.(2,5)答案:B12.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.13.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.14.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1
200人,女學(xué)生1
000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19215.在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是______.答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件有C52=10種結(jié)果,其中至少有一個(gè)紅球的事件包括C22+C21C31=7個(gè)基本事件,根據(jù)古典概型公式得到P=710,故為:710.16.在統(tǒng)計(jì)中,樣本的標(biāo)準(zhǔn)差可以近似地反映總體的()
A.平均狀態(tài)
B.頻率分布
C.波動(dòng)大小
D.最大值和最小值答案:C17.設(shè)雙曲線的漸近線為:y=±32x,則雙曲線的離心率為______.答案:由題意ba=32或ab=32,∴e=ca=132或133,故為132,133.18.甲射擊運(yùn)動(dòng)員擊中目標(biāo)為事件A,乙射擊運(yùn)動(dòng)員擊中目標(biāo)為事件B,則事件A,B為()
A.互斥事件
B.獨(dú)立事件
C.對(duì)立事件
D.不相互獨(dú)立事件答案:B19.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.20.已知直線3x+4y-3=0與直線6x+my+14=0平行,則它們之間的距離是______.答案:直線3x+4y-3=0即6x+8y-6=0,它直線6x+my+14=0平行,∴m=8,則它們之間的距離是d=|c1-c2|a2+b2=|-6-14|62+82=2,故為:2.21.設(shè)曲線C的方程是,將C沿x軸,y軸正向分別平移單位長(zhǎng)度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點(diǎn)A(,)對(duì)稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對(duì)稱點(diǎn),則有,,代入曲線C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線C1上.反過來(lái),同樣可以證明,在曲線C1上的點(diǎn)關(guān)于點(diǎn)A的對(duì)稱點(diǎn)在曲線C上,因此,曲線C與C1關(guān)于點(diǎn)A對(duì)稱.22.過點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點(diǎn).求線段AB的長(zhǎng).答案:直線的參數(shù)方程為
x
=
-3
+
32sy
=
12s
(s
為參數(shù)),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數(shù)方程代入上式,得
s2-63s+
10
=
0.設(shè)A、B對(duì)應(yīng)的參數(shù)分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.23.按ABO血型系統(tǒng)學(xué)說(shuō),每個(gè)人的血型為A、B、O、AB型四種之一,依血型遺傳學(xué),當(dāng)且僅當(dāng)父母中至少有一人的血型是AB型時(shí),子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D24.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.25.已知圓錐的母線長(zhǎng)為5,底面周長(zhǎng)為6π,則圓錐的體積是______.答案:圓錐的底面周長(zhǎng)為6π,所以圓錐的底面半徑為3;圓錐的高為4所以圓錐的體積為13×π32×4=12π故為12π.26.向面積為S的△ABC內(nèi)任投一點(diǎn)P,則△PBC的面積小于S2的概率為______.答案:記事件A={△PBC的面積小于S2},基本事件空間是三角形ABC的面積,(如圖)事件A的幾何度量為圖中陰影部分的面積(DE是三角形的中位線),因?yàn)殛幱安糠值拿娣e是整個(gè)三角形面積的34,所以P(A)=陰影部分的面積三角形ABC的面積=34.故為:34.27.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長(zhǎng)為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.28.一個(gè)口袋內(nèi)有5個(gè)白球和3個(gè)黑球,任意取出一個(gè),如果是黑球,則這個(gè)黑球不放回且另外放入一個(gè)白球,這樣繼續(xù)下去,直到取出的球是白球?yàn)橹梗笕〉桨浊蛩璧拇螖?shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925629.如圖,已知△ABC,過頂點(diǎn)A的圓與邊BC切于BC的中點(diǎn)P,與邊AB、AC分別交于點(diǎn)M、N,且CN=2BM,點(diǎn)N平分AC.則AM:BM=()
A.2
B.4
C.6
D.7
答案:D30.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標(biāo)系設(shè)正方體的棱長(zhǎng)等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設(shè)n=(x,y,z)是平面A1BD的一個(gè)法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個(gè)法向量為n=(1,-1,-1)設(shè)直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3331.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()
A.
B.
C.
D.答案:D32.已知求證:答案:證明見解析解析:證明:33.在空間直角坐標(biāo)系中,已知點(diǎn)P(a,0,0),Q(4,1,2),且|PQ|=,則a=()
A.1
B.-1
C.-1或9
D.1或9答案:C34.甲、乙兩人共同投擲一枚硬幣,規(guī)定硬幣正面朝上甲得1分,否則乙得1分,先積3分者獲勝,并結(jié)束游戲.
①求在前3次投擲中甲得2分,乙得1分的概率.
②設(shè)ξ表示到游戲
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗(yàn)中的臨床試驗(yàn)前沿進(jìn)展
- 生物支架引導(dǎo)的神經(jīng)再生策略
- 生物打印技術(shù)在急性肝損傷修復(fù)中的細(xì)胞移植
- 生物化學(xué)虛擬仿真實(shí)驗(yàn)教學(xué)
- 生物制品穩(wěn)定性試驗(yàn)聚集與沉淀分析
- 生物制劑失應(yīng)答的炎癥性腸病多中心臨床研究數(shù)據(jù)
- 深度解析(2026)《GBT 20081.3-2021氣動(dòng) 減壓閥和過濾減壓閥 第3部分:測(cè)試減壓閥流量特性的可選方法》
- 京東物流經(jīng)理面試常見問題集
- 游戲引擎研發(fā)團(tuán)隊(duì)的項(xiàng)目經(jīng)理面試問題集
- 生殖基因編輯試驗(yàn)的倫理邊界探討
- 美容營(yíng)銷培訓(xùn)課程
- 外包項(xiàng)目免責(zé)協(xié)議書8篇
- 華為質(zhì)量管理手冊(cè)
- 機(jī)械加工檢驗(yàn)標(biāo)準(zhǔn)及方法
- 充電樁采購(gòu)安裝投標(biāo)方案1
- 小米員工管理手冊(cè)
- 自身免疫性肝病的診斷和治療
- 國(guó)家開放大學(xué)化工節(jié)能課程-復(fù)習(xí)資料期末復(fù)習(xí)題
- xx鄉(xiāng)鎮(zhèn)衛(wèi)生院重癥精神病管理流程圖
- 2023年印江縣人民醫(yī)院緊缺醫(yī)學(xué)專業(yè)人才招聘考試歷年高頻考點(diǎn)試題含答案解析
- 安徽綠沃循環(huán)能源科技有限公司12000t-a鋰離子電池高值資源化回收利用項(xiàng)目(重新報(bào)批)環(huán)境影響報(bào)告書
評(píng)論
0/150
提交評(píng)論