2022年河南省周口市扶溝高級中學高考臨考沖刺數學試卷含解析_第1頁
2022年河南省周口市扶溝高級中學高考臨考沖刺數學試卷含解析_第2頁
2022年河南省周口市扶溝高級中學高考臨考沖刺數學試卷含解析_第3頁
2022年河南省周口市扶溝高級中學高考臨考沖刺數學試卷含解析_第4頁
2022年河南省周口市扶溝高級中學高考臨考沖刺數學試卷含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數在時取得最小值,則()A. B. C. D.2.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.3.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.4.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.55.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.6.若復數,則()A. B. C. D.207.已知定義在R上的函數(m為實數)為偶函數,記,,則a,b,c的大小關系為()A. B. C. D.8.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.9.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則10.設等差數列的前n項和為,若,則()A. B. C.7 D.211.在平面直角坐標系中,銳角頂點在坐標原點,始邊為x軸正半軸,終邊與單位圓交于點,則()A. B. C. D.12.設函數定義域為全體實數,令.有以下6個論斷:①是奇函數時,是奇函數;②是偶函數時,是奇函數;③是偶函數時,是偶函數;④是奇函數時,是偶函數⑤是偶函數;⑥對任意的實數,.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知,且,則的值是____________.14.在中,,,,則__________.15.設為數列的前項和,若,則____16.若在上單調遞減,則的取值范圍是_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-5:不等式選講]:已知函數.(1)當時,求不等式的解集;(2)設,,且的最小值為.若,求的最小值.18.(12分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.19.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.20.(12分)已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.21.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.22.(10分)為了實現中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現代化農場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產量,積極開展技術創(chuàng)新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區(qū)別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數據信息如下圖:(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據圖中的數據信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據題中所給數據,用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農場根據以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數為,求的分布列及期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.2.A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據,即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.3.D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.4.B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.5.A【解析】

由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.6.B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數的運算,復數的模,意在考查學生的計算能力.7.B【解析】

根據f(x)為偶函數便可求出m=0,從而f(x)=﹣1,根據此函數的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數的定義,指數函數的單調性,對于偶函數比較函數值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據單調性去比較函數值大?。?.C【解析】

先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.9.D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.10.B【解析】

根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數列的性質及前項和公式,屬于基礎題.11.A【解析】

根據單位圓以及角度范圍,可得,然后根據三角函數定義,可得,最后根據兩角和的正弦公式,二倍角公式,簡單計算,可得結果.【詳解】由題可知:,又為銳角所以,根據三角函數的定義:所以由所以故選:A【點睛】本題考查三角函數的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點在于公式的計算,識記公式,簡單計算,屬基礎題.12.A【解析】

根據函數奇偶性的定義即可判斷函數的奇偶性并證明.【詳解】當是偶函數,則,所以,所以是偶函數;當是奇函數時,則,所以,所以是偶函數;當為非奇非偶函數時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由于,且,則,得,則.14.1【解析】

由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎題.15.【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.16.【解析】

由題意可得導數在恒成立,解出即可.【詳解】解:由題意,,當時,顯然,符合題意;當時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導數研究函數的單調性,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)當時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當時,,原不等式可化為,①當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.18.(1)不是,見解析(2)(3)【解析】

(1)利用遞推關系求出數列的通項公式,進一步驗證時,是否為數列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數列為等差數列,設數列的公差為,再根據不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數列中的項,故數列不是為“數列”(2)因為數列是公差為的等差數列,所以.因為數列為“數列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數列中的項.②若,則.此時,當時,不為正整數,所以不符合題意.綜上,.(3)由題意,所以,又因為,且數列為“數列”,所以,即,所以數列為等差數列.設數列的公差為,則有,由,得,整理得,①.②若,取正整數,則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據②式可得,所以.又,所以.經檢驗當時,①②兩式對應任意恒成立,所以數列的通項公式為.【點睛】本題考查數列新定義題、等差數列的通項公式,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.19.(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.20.(1)(2)點在曲線外.【解析】

(1)先消參化曲線的參數方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解】(1)由曲線的參數方程為可得曲線的普通方程為,則曲線的極坐標方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數方程與普通方程的轉化,考查直角坐標方程與極坐標方程的轉化,考查點與圓的位置關系.21.(1)證明見解析(2)【解析】

(1)由已知線面垂直得,結合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據題設知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設平面的一個法向量,則令,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論