新北師大版1.6完全平方公式_第1頁(yè)
新北師大版1.6完全平方公式_第2頁(yè)
新北師大版1.6完全平方公式_第3頁(yè)
新北師大版1.6完全平方公式_第4頁(yè)
新北師大版1.6完全平方公式_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

6完全平方公式(一)第一章整式的乘除問(wèn)題aabb

一塊邊長(zhǎng)為a

米的正方形試驗(yàn)田,

用不同的形式表示試驗(yàn)田的總面積,并進(jìn)行比較.你發(fā)現(xiàn)了什么?

因需要將其邊長(zhǎng)增加b

米,

形成四塊試驗(yàn)田,以種植不同的新品種.由面積相等可得:(a+b)2

=a2+2ab+b2

ababa2ababb2(a+b)(a+b)=a2+ab+ab+b2(a+b)2=a2+2ab+b2----根據(jù)冪的定義----合并同類項(xiàng)能不能從運(yùn)算的角度得到:

(a+b)2=a2+2ab+b2

(a+b)2=(a+b)(a+b)

----------冪的意義

=a(a+b)+b(a+b)

=a2+ab+ab+b2

=a2+2ab+b2----------多項(xiàng)式乘法法則

所以:(a+b)2=a2+2·a·b+b2可得:根據(jù):所以:(a-b)2=a2-2·a·b+b2想一想等于什么?變形:a?baaabb(a?b)bb(a?b)2a?b(a-b)2=a2-2ab+b2

你能自己設(shè)計(jì)一個(gè)圖形解釋這一公式嗎?結(jié)論:公式1可描述為:兩個(gè)數(shù)的和的平方等于這兩個(gè)數(shù)的平方和,加上它們積的2倍公式2可描述為:兩個(gè)數(shù)的差的平方等于這兩個(gè)數(shù)的平方和,減去它們積的2倍完全平方公式你能用自己的語(yǔ)言敘述這一公式嗎?公式結(jié)構(gòu)特點(diǎn):(a+b)2=a2+2ab+b2(a-b)2=a2

-2ab+b21、展開(kāi)式為二次三項(xiàng)式;2、展開(kāi)式中首末兩項(xiàng)為兩數(shù)的平方和;3、中間項(xiàng)是兩數(shù)積的2倍,且與左邊中間項(xiàng)的符號(hào)相同。左邊:右邊:記憶口訣:

首平方,尾平方,

積的2倍放中央。注意:公式中的字母a,b可以是單項(xiàng)式,多項(xiàng)式……..例1運(yùn)用完全平方公式計(jì)算:解:(x+2y)2==x2(1)(x+2y)2(a+b)2=a2+2ab+b2x2+2?x?2y+(2y)2+4xy+4y2例:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2公式應(yīng)用

=x2–4xy2+4y4(2)(x–2y2)2+(2y2)2解:(x–2y2)2=(a-b)2=a2

-2ab+b2

x2–2?(x)?(2y2)例1利用完全平方公式計(jì)算:.(2x+3)2

(2).(4x-5y)2(3).(-x+3y)2

解:(1)(2)(3)完全平方公式再認(rèn)簡(jiǎn)單應(yīng)用:例2利用完全平方公式計(jì)算:(1)1022;

(2)1972.

(1)962

;(2)2032.鞏固練習(xí):綜合應(yīng)用例3計(jì)算:

(1)(x+3)2-x2

(2)(x+5)2–(x-2)(x-3)

(3)(a+b+3)(a+b-3)綜合應(yīng)用鞏固練習(xí):(a-b+3)(a-b-3)(x-2)(x+2)-(x+1)(x-3)(ab+1)2-

(ab-1)2(2x-y)2-4(x-y)(x+2y)課堂小結(jié)1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào).2.

解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇.指出下列各式中的錯(cuò)誤,并加以改正:

(1)(2a?1)2=2a2?2a+1;(2)(2a+1)2=4a2+1;

(3)(a?1)2=a2?2a?1.解:(1)第一數(shù)被平方時(shí),

未添括號(hào);第一數(shù)與第二數(shù)乘積的2倍

少乘了一個(gè)2;應(yīng)改為:(2a?1)2=(2a)2?2?2a?1+1;

(2)少了第一數(shù)與第二數(shù)乘積的2倍

(丟了一項(xiàng));應(yīng)改為:(2a+1)2=(2a)2+2?2a?1+1;

(3)第一數(shù)平方未添括號(hào),

第一數(shù)與第二數(shù)乘積的2倍

錯(cuò)了符號(hào);第二數(shù)的平方這一項(xiàng)錯(cuò)了符號(hào);應(yīng)改為:(a?1)2=(a)2?2?(a)?1+12;

糾錯(cuò)練習(xí)完全平方公式

例2利用完全平方公式計(jì)算:

(1)(-1-2x)2(2)(-2x+1)2(1)(-1-2x)2=(-1)2-2·(-1)·2x+(2x)2=1+4x+4x2=(-1)2+2·(-1)·(-2x)+(-2x)2=1+4x+4x2=[-(1+2x)]2=(1+2x)2=1+4x+4x2又識(shí)(a-b)2=a2-2ab+b2(a+b)2=a2+2ab+b2還有其他方法嗎?方法2:(-1-2x)2方法3:(-1-2x)2溫馨提示從不同的角度來(lái)看同一問(wèn)題,常常會(huì)有不同的方法。完全平方公式

例2利用完全平方公式計(jì)算:

(1)(-1-2x)2

;(2)(-2x+1)2(2)(-2x+1)2=(-2x)2+2·(-2x)·1+12=4x2-4x+1又識(shí)口訣首平方,尾平方,積的兩倍放中央,加減看前方,同加異減。(a-b)2=a2-2ab+b2(a+b)2=a2+2ab+b2方法2:(-2x+1)2=(2x-1)2=4x2-4x+1練一練

(1)(x

?2y)2

;

(2)(2xy+

x

)2

;1.計(jì)算:(3)(n+1)2?n2;(4)(4x+0.5)2;(5)(2x2-3y2)2練一練

2.指出下列各式中的錯(cuò)誤,并加以改正:

(1)(2a?1)2=2a2?2a+1;(2)(2a+1)2=4a2+1;

(3)(a?1)2=a2?2a?1.又識(shí)完全平方公式:

利用完全平方公式計(jì)算:

(1)(-1-2x)2

;(2)(-2x+1)2簡(jiǎn)單應(yīng)用:例2利用完全平方公式計(jì)算:(1)1022;

(2)1972.

(1)962

;(2)2032.鞏固練習(xí):綜合應(yīng)用例3計(jì)算:

(1)(x+3)2-x2

(2)(x+5)2–(x-2)(x-3)

(3)(a+b+3)(a+b-3)綜合應(yīng)用鞏固練習(xí):(a-b+3)(a-b-3)(x-2)(x+2)-(x+1)(x-3)(ab+1)2-

(ab-1)2(2x-y)2-4(x-y)(x+2y)課堂小結(jié)1.完全平方公式的使用:在做題過(guò)程中一定要注意符號(hào)問(wèn)題和正確認(rèn)識(shí)a、b表示的意義,它們可以是數(shù)、也可以是單項(xiàng)式,還可以是多項(xiàng)式,所以要記得添括號(hào).2.

解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇.小結(jié):公式1.兩個(gè)數(shù)的和的平方等于這兩個(gè)數(shù)的平方和與它們積的2倍的和公式2.兩個(gè)數(shù)的差的平方等于這兩個(gè)數(shù)的平方和與它們積的2倍的差四.記憶口訣:首平方,尾平方,積的2倍在中央。三.完全平方公式的結(jié)構(gòu)特征:公式的左邊是兩數(shù)的和(或差)的平方,右邊是這兩個(gè)數(shù)的平方和加上(減去)這兩個(gè)數(shù)的積的2倍。公式1.(a+b)2=a2+2ab+b2

公式2.(a-b)2=a2-2ab+b2(a±b)2=a2±2ab+b2一.完全平方公式:歸納二.描述:作業(yè)1.教材習(xí)題1.11.2.拓展練習(xí):(a+b)2與(a-b)2有怎樣的聯(lián)系?能否用一個(gè)等式來(lái)表示兩者之間的關(guān)系,并嘗試用圖形來(lái)驗(yàn)證你的結(jié)論?提高篇:二.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論