2023屆吉林省汪清縣汪清四中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2023屆吉林省汪清縣汪清四中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2023屆吉林省汪清縣汪清四中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2023屆吉林省汪清縣汪清四中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2023屆吉林省汪清縣汪清四中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.2.“”是“函數(shù)的圖象關(guān)于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④4.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差5.已知角的頂點與坐標(biāo)原點重合,始邊與軸的非負(fù)半軸重合,它的終邊過點,則的值為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.7.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定8.設(shè)點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.9.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.10.若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.12.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.15.已知向量,,且,則________.16.設(shè)為銳角,若,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.18.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.19.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.20.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.21.(12分)已知,均為正數(shù),且.證明:(1);(2).22.(10分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點,且為中點,,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運算能力,屬于中檔題.2、A【解析】

先求解函數(shù)的圖象關(guān)于直線對稱的等價條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對稱,則,解得,故“”是“函數(shù)的圖象關(guān)于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.3、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.4、D【解析】

ABD可通過統(tǒng)計圖直接分析得出結(jié)論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應(yīng)的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計圖,分析出對應(yīng)的信息,對學(xué)生分析問題的能力有一定要求.5、B【解析】

根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計算能力.6、B【解析】

由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.7、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.8、C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時對和的關(guān)系的處理是解題關(guān)鍵.9、A【解析】

計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.10、D【解析】

根據(jù)復(fù)數(shù)的運算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復(fù)數(shù)的運算,可得,所對應(yīng)的點為位于第四象限.故選D.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)的運算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.11、B【解析】

由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.12、D【解析】

通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運算,屬于基礎(chǔ)題.14、【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.15、【解析】

根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計算能力,屬于基礎(chǔ)題.16、【解析】

∵為銳角,,∴,∴,,故.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點,的方向為軸正方向,為單位長度,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標(biāo)原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標(biāo)系,為等邊三角形,,,,設(shè)平面的法向量為,則,即,∴可取,設(shè)平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【點睛】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.18、(1);(2)①證明見解析;②【解析】

(1)由題意焦距為2,設(shè)點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導(dǎo)出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,推導(dǎo)出,,由此推導(dǎo)出(定值).【詳解】(1)由題意焦距為2,可設(shè)點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標(biāo)準(zhǔn)方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,,,,(定值).【點睛】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.19、(1)(1)不存在,理由見解析【解析】

(1)利用離心率和過點,列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標(biāo),用點坐標(biāo)表示,利用韋達關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當(dāng)直線的斜率不存在時,,不符合題意.當(dāng)?shù)男甭蚀嬖跁r,設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.21、(1)見解析(2)見解析【解析】

(1)由進行變換,得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論