版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
16.函數(shù)模型及其應(yīng)用學(xué)習(xí)目標(biāo)1.從實(shí)例出發(fā),體驗(yàn)用函數(shù)描述實(shí)際問題的價(jià)值,體會(huì)函數(shù)是描述客觀世界變化規(guī)律的基體模型.2.掌握函數(shù)建模的基本方法和步驟.3.熟悉幾種主要的函數(shù)模型:一次函數(shù)、二次函數(shù)、分段函數(shù)及較簡單的指數(shù)函數(shù)和對數(shù)函數(shù).4.初步樹立利用函數(shù)模型研究變量取值范圍和最值的意識(shí),初步理解生活中的優(yōu)化問題一般都應(yīng)通過建立函數(shù)模型來分析與研究這種數(shù)學(xué)思考方式.一、夯實(shí)基礎(chǔ)基礎(chǔ)梳理1.三種函數(shù)模型的性質(zhì)在圖象的變化隨的增大逐漸與軸平行隨的增大逐漸與軸平行隨值不同而不同2.三種函數(shù)增長速度(1)在區(qū)間上,函數(shù),和都是__________.但__________不同,且不在同一個(gè)“檔次”上.(2)隨著的增大,的增長速度越來越快,會(huì)超過并遠(yuǎn)遠(yuǎn)大于的增長速度,而的增長速度__________.(3)存在一個(gè),當(dāng)時(shí),有__________.3.常見函數(shù)數(shù)模型名稱解析式條件一次函數(shù)模型反比例函數(shù)模型二次函數(shù)模型頂點(diǎn)式:指數(shù)函數(shù)模型且對數(shù)函數(shù)模型且冪函數(shù)模型4.題型分析(1)圖象信息遷移問題; (2)指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)模型的比較(3)利用已知函數(shù)模型解決問題 (4)自建函數(shù)模型應(yīng)用題基礎(chǔ)達(dá)標(biāo) 1.一個(gè)水池每小時(shí)注入水量是全池的,水池還沒有注水部分與總量的比隨時(shí)間(小量)變化的關(guān)系式為__________.2.如圖,用長度為24的材料圍一個(gè)矩形場地,中間且有兩道隔墻,要使矩形的面積最大,則隔墻的長度為().A.3 B.4 C.6 D.12米的長方體無蓋水池,如池底和池壁的造價(jià)分別為和80元/米,則總造價(jià)與一底連長的函數(shù)關(guān)系式為().A. B.C. D.4.似定從甲地到乙地通話分鐘的電話費(fèi)由(其中,是大于或等于的最小整數(shù)),則從甲地到乙地通話時(shí)間為分鐘的話費(fèi)為__________.5.周長為的鐵絲彎成下部為矩形,上部為半圓形的框架(如圖),若矩形底邊長為,此框架圍成的面積為,則關(guān)于的函數(shù)關(guān)系式是_____________________________二、學(xué)習(xí)指引自主探究1.不同函數(shù)模型能夠刻畫現(xiàn)實(shí)世界不同的變化規(guī)律,如一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)就是常用的描述現(xiàn)實(shí)世界中不同增長規(guī)律的函數(shù)模型,那么建立函數(shù)模型的含義是什么呢?2.如圖所示,在矩形中,已知,(1)每天幾點(diǎn)時(shí)蓄水池中的存水量最少?(2)若池中存水量不多于80噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,則每天會(huì)有幾個(gè)小時(shí)出現(xiàn)這種現(xiàn)象?【解析】(1)設(shè)點(diǎn)時(shí)(即從零點(diǎn)起小時(shí)后)池中的存水量為噸,則,當(dāng)時(shí),即,取得最小值40.即每天6點(diǎn)時(shí)蓄水池中的存水量最少.(2)由,解得,即,時(shí),池中存水量將不多于80噸,由知,每天將有8個(gè)小時(shí)出現(xiàn)供水緊張現(xiàn)象.答:(1)每天6點(diǎn)時(shí)蓄水池中的存水量最少;(2)每天將有8個(gè)小時(shí)出現(xiàn)供水緊張現(xiàn)象.4.某醫(yī)藥研究所開發(fā)了一種新藥,據(jù)監(jiān)測,如果成人按規(guī)定的劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時(shí)間之間近似滿足如圖所示的曲線.其中是線段,部分是函數(shù)(是常數(shù))的圖象,此部分圖象經(jīng)過、點(diǎn)(如圖所示).(1)寫出服藥后每豪升血液中含藥量關(guān)于時(shí)間的函數(shù)關(guān)系式;(2)據(jù)測定:每豪升血液中含藥量不少于時(shí)治療有效,假若某病人第一次服藥為早上60:00,當(dāng)藥效沒有時(shí)應(yīng)立即服第二次藥,第二次服藥最遲是當(dāng)天幾點(diǎn)鐘?(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥后再過,該病人每豪升血液中含藥量為多少?【解析】(1)當(dāng)時(shí),設(shè),代入,解得.當(dāng)時(shí)將,代入,得所以服藥后每豪升血液中含藥量關(guān)于時(shí)間的函數(shù)關(guān)系式為:(2)由圖可知,只需考慮服藥1小時(shí)后,什么時(shí)候沒有藥效即可.由知道,第一次服藥5小時(shí)后沒有藥效,因此當(dāng)天上午11點(diǎn)鐘應(yīng)再次服藥.(3)11點(diǎn)鐘再次服藥后三小時(shí),體內(nèi)的藥物量由兩部分組成,一是第一次服藥形成的藥物剩余量,二是第二次服藥形成的藥物剩余量,其中,,就是說第二次服藥后再過,該病人每豪升血液中含藥量為.5.某平原鎮(zhèn)有、、、四間工廠坐落在邊長為的正方形頂點(diǎn)上,為了交通暢順,繁榮經(jīng)濟(jì),鎮(zhèn)政府決定修建一個(gè)如圖所示的使得任何兩間工廠都有通道的道路網(wǎng)(為正方形中心,).(1)是否存在一個(gè)道路網(wǎng),滿足題設(shè)要求且使它的總長不超過;(2)當(dāng)為多少時(shí),道路網(wǎng)的總長度最短.【解析】設(shè)道路網(wǎng)的總長為,則,(*)(1)依題要求有,即,解得,由此可知,當(dāng)公共道路長,有無數(shù)種方案滿足要求.(2)為了求函數(shù)的最小值.把(*)化為的方程.上述關(guān)于方程有解,解得,把代入(*),解得.故當(dāng)公共道路長為時(shí),道路網(wǎng)總長最短,為.三、能力提升能力闖關(guān)1.某大樓共有20層,有19人在第一層上了電梯,他們分別要去第二至第二十層,每層1人,而電梯只允計(jì)停一次,只可使1人滿意,其余18人都要步行上樓或下樓,假定乘客每向下走1層的不滿意度為1,每向上走1層的不滿意度為2,所有人的不滿意度為,為使最小,電梯應(yīng)當(dāng)停在__________層.2.某公司制定年度獎(jiǎng)勵(lì)條例,對在工作中取得優(yōu)異成績的營銷經(jīng)理實(shí)行獎(jiǎng)勵(lì),其中有一個(gè)獎(jiǎng)勵(lì)項(xiàng)目是針對產(chǎn)品營銷成績的高低對營銷經(jīng)理進(jìn)行獎(jiǎng)勵(lì)的.獎(jiǎng)勵(lì)公式為:,(其中是營銷經(jīng)理一年的月平均營銷成績與該公司所有營銷經(jīng)理一年的月平均營銷成績之差,的單位為元),而現(xiàn)有甲、乙兩們營銷經(jīng)理,甲營銷經(jīng)理一年的月平均營銷成績比該公司所有營銷經(jīng)理一年的月平均營銷成績高出18個(gè)單位,乙營銷經(jīng)理一年的月平均營銷成績比刻公司所有營銷經(jīng)理一年的月平均營銷成績高出21個(gè)單位,則乙所得獎(jiǎng)勵(lì)比甲所得獎(jiǎng)勵(lì)多().A.6000元 B.9000元 C.16000元 D.17000元3.某租賃公司傭有汽車100輛.當(dāng)每輛四的月租金為3000元時(shí),可全部租出.當(dāng)每輛四的月租金增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?(2)當(dāng)每輛四的月租金定為多少元時(shí),該租賃公司,的月收益最大?最大月收益是多少?拓展遷移1.興修水利開渠,其橫斷面為等腰梯形,如圖,腰與水平線夾角為,要求浸水周長(即斷面與水接觸的邊界長)為定值,當(dāng)渠深__________時(shí),可使水渠流水量最大.2.某工廠有一段舊墻長14米,現(xiàn)準(zhǔn)備利用這段舊墻為一面建造平面圖形為矩形,面積為的廠房,工程條件是:①建1米新墻的費(fèi)用為元;②修1米舊墻的費(fèi)用為元;③拆去1米的舊墻,用可得的建材建1米的新建的費(fèi)用為元,經(jīng)討論有兩種方案:方案一:利用舊墻一段米為矩形一邊;方案二:矩形廠房利用舊墻的一面邊長,問如何利用舊墻建墻費(fèi)用最省?試比較兩種方案哪個(gè)更好.挑戰(zhàn)極限1.地產(chǎn)汽油,地需要汽油,如果用汽車直接從地往地運(yùn)油,往返所需油耗恰好等于其滿載汽油的噸數(shù),所以無法直接從地將汽油運(yùn)到地,今在其途中地設(shè)一個(gè)中轉(zhuǎn)汽油庫,先由往返于,之間的汽車將汽油運(yùn)到地,然后再由往返于,之間的汽車將汽油運(yùn)到地.(1)設(shè),怎樣組織運(yùn)輸才能以最經(jīng)濟(jì)的方法將地的汽油運(yùn)往地(即地收到的汽油最多),此時(shí)運(yùn)油率等于多少?(2)等于多少時(shí),運(yùn)油率取得最大值?此時(shí)又將怎樣組織運(yùn)輸?課程小結(jié)1.解決函數(shù)應(yīng)用問題應(yīng)用問題應(yīng)著重注意以下幾點(diǎn):(1)閱讀理解、整理數(shù)據(jù):通過分析、畫圖、列表、歸類等方法,快速弄清數(shù)據(jù)之間的關(guān)系,數(shù)據(jù)的單位等等.理解題意的過程包括對題意的整體理解和局部理解,以及分析關(guān)系、領(lǐng)悟?qū)嵸|(zhì).“整體理解”就是弄清題目所述的事件和研究對象;“局部理解”是指抓住題目中的關(guān)鍵字句,正確把握其含義;“分析關(guān)系”就是根據(jù)題意,弄清題中各有關(guān)量的數(shù)量關(guān)系;“領(lǐng)悟?qū)嵸|(zhì)”是指抓住題目中的主要部題、正確的識(shí)別其類型.(2)建立函數(shù)模型:關(guān)鍵是正確選反自變量將問題的目瞟表示為這個(gè)變量的函數(shù),建立函數(shù)模型的過程主要是抓住某些量之間的相等關(guān)系列出函數(shù)式,不要忘記考察函數(shù)的定義域.(3)求解函數(shù)模型:主要是計(jì)算函數(shù)的特殊值,研究函數(shù)的單調(diào)性,求函數(shù)的值域、最大(?。┲档龋⒁獍l(fā)揮函數(shù)圖象的作用.(4)還原評價(jià):應(yīng)用問題不是單純的數(shù)學(xué)問題,既要符合數(shù)學(xué)學(xué)科又要符合實(shí)際背景,對于解出的結(jié)果要代入原問題進(jìn)行檢驗(yàn)、評判最后作出的結(jié)論,并作出回答.2.?dāng)?shù)學(xué)建模中的分析方法有:(1)關(guān)系分析法,即通過尋找關(guān)鍵詞和關(guān)鍵量之間的數(shù)量關(guān)系的方法來建立問題的數(shù)學(xué)模型的方法.(2)列表分析法,即通過列表的方式探索問題的數(shù)學(xué)模型的方法.(3)圖像分析法,即通過對圖像中的數(shù)量關(guān)系時(shí)行分析來建立問題數(shù)學(xué)模型的方法.《導(dǎo)學(xué)手冊》問題記錄表大家在儾使用時(shí)如有發(fā)現(xiàn)有問題,請寫在下面,交數(shù)學(xué)組,謝謝!頁碼章節(jié)部分問題描述示例:P41挑戰(zhàn)極限11題原題中應(yīng)為“”
16.函數(shù)模型及其應(yīng)用基礎(chǔ)梳理1.增函數(shù),增函數(shù),增函數(shù).2.增函數(shù),增長速度,越來越慢,.基礎(chǔ)達(dá)標(biāo)1.,且.2..【解析】設(shè)隔墻長為,則矩形場地長寬分別為,矩形的面積,,顯然當(dāng)隔墻長時(shí),矩形的面積最大.3..4...5..【解析】半圓弧長為,矩形寬為,于是框架圍成的面積為,要使問題有意義,應(yīng)有.自主探究1.【解析】分別用變量表示有因果關(guān)系的兩個(gè)量,如果我們能將變量表示為的函數(shù),則稱此函數(shù)為問題的一個(gè)函數(shù)模型.我們生活中的絕大多數(shù)變化現(xiàn)象,很難根據(jù)已知理論直接建立函數(shù)模型,一般是通過采集變化過程中的變量的數(shù)據(jù),描出相應(yīng)的散點(diǎn)圖建立大致反映變化規(guī)律的函數(shù)模型.2.【解析】(1)容易證明四邊形是平行四邊形,我們有三種方法求四邊形的面積,其一,直接求面積,用底底上的高求;其二,用;其三,間接求面積,用矩形面積減去四個(gè)角上的直角三角形的面積,對于本題,用方法三解,最佳.設(shè)四邊形面積為,則,∴.(2)的取值要保證圖形中的線段長滿足下列關(guān)系,所以應(yīng)有,故所求函數(shù)的定義域?yàn)椋?),∴,若,即時(shí),則當(dāng)時(shí),有最大值;若,即時(shí),在上是增函數(shù),此時(shí)當(dāng)時(shí),有最大值為,綜上可知,當(dāng)時(shí),時(shí),四邊形面積,當(dāng)時(shí),時(shí),四邊形面積.3.【解析】建立函數(shù)模型解決實(shí)際問題,一般有下列幾個(gè)重要步驟:第一步:設(shè)置因果變量;第二步:利用已知條件,建立關(guān)于的函數(shù)解析式;第三步:研究函數(shù)的定義域;第四步:利用函數(shù)研究目標(biāo),如果函數(shù)解析式中有字母系數(shù),則需通過分類討論研究目標(biāo);第五步:回答問題.4.【解析】(1)由于銷售量和各種支出均以月為單位計(jì)量,所以,先考慮月利潤,設(shè)該店的月利潤為元,有職工名.則.又由圖可知:(2)將代入有:由已知,當(dāng)時(shí),,即,解得.即此時(shí)該店有名職工.(3)若該店只安排名職工,則月利潤當(dāng)時(shí),求得時(shí),取最大值元.當(dāng)時(shí),求得時(shí),取最大值元.綜上,當(dāng)時(shí),月利潤有最大值元.需要還清的總債務(wù)是:萬元+20萬元=(元),設(shè)該店最早可在年后還清債務(wù),依題意,有,解得.所以,該店最早可在年后還清債務(wù),此時(shí)消費(fèi)品的單價(jià)定為元.想一想1.如圖所示,的增長速度遠(yuǎn)遠(yuǎn)快于的增長速度.2.生活實(shí)際問題中,自變量考慮生活實(shí)際意義,不能只注重函數(shù)解析式自身的限制要求.能力闖關(guān)1.14.【解析】設(shè)電梯停在層的不滿意度為,則,將再定成:,兩式相加得:,∴.此二次函數(shù)開口向上,是最靠近對稱軸的整數(shù),故時(shí),最?。?..【解析】甲所得獎(jiǎng)勵(lì)為(元),乙所得獎(jiǎng)勵(lì)為(元),所以乙所得獎(jiǎng)勵(lì)比甲所得獎(jiǎng)勵(lì)多(元).3.【解析】(1)當(dāng)每輛車的月租金定為元時(shí),未租出的車輛數(shù)為,所以這時(shí)租出了輛車.(2)設(shè)每輛車的月租金定為元,則租憑公司的月收益為,整理,得,所以,當(dāng)時(shí),最大,其最大值為,即當(dāng)每輛車的月租金定為元時(shí),租憑公司的月收益最大,最大月收益為元.答:(1)當(dāng)每輛車的月租金定為元時(shí),能租出輛車;(2)當(dāng)每輛車的月租金定為元時(shí),租憑公司的月收益最大,最大月收益為元.拓展遷移1..【解析】設(shè)渠底長為,則腰長,∴,橫斷面面積,要使問題有意義,應(yīng)有,顯然當(dāng),時(shí),橫斷面面積最大,從而水渠流水量也最大.2.【解析】如果選擇方案一:修舊墻費(fèi)用為元,拆舊墻造新墻費(fèi)用為,其余新墻費(fèi)用:,∴總費(fèi)用,∴,當(dāng)時(shí),,如果選擇方案二:利用舊墻費(fèi)用為(元),建新墻費(fèi)用為(元)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建醫(yī)科大學(xué)附屬第二醫(yī)院非在編人員招聘2人(四)筆試重點(diǎn)試題及答案解析
- 2025年杭州市上城區(qū)閘弄口街道社區(qū)衛(wèi)生服務(wù)中心招聘編外1人備考核心試題附答案解析
- 2025云南能投軍創(chuàng)產(chǎn)業(yè)投資有限公司招聘4人筆試重點(diǎn)題庫及答案解析
- 2025安徽省能源集團(tuán)有限公司博士后科研工作站招聘2人考試重點(diǎn)題庫及答案解析
- 2026湖北咸寧市鄂南高級中學(xué)專項(xiàng)校園招聘教師5人(華師專場)考試重點(diǎn)題庫及答案解析
- 2026廣西桂林旅游學(xué)院專職輔導(dǎo)員招聘9人考試重點(diǎn)試題及答案解析
- 2025重慶機(jī)場集團(tuán)有限公司園招聘35人考試核心試題及答案解析
- 2025年合肥慧豐人才服務(wù)有限公司第二批招聘勞務(wù)派遣工作人員2名筆試重點(diǎn)題庫及答案解析
- 2025年南陽唐河縣屬國有企業(yè)招聘工作人員13名參考考試題庫及答案解析
- 2025山東濟(jì)寧市東方圣地人力資源開發(fā)有限公司招聘輔助服務(wù)人員7人考試備考題庫及答案解析
- 2025云南省人民檢察院招聘22人筆試考試備考試題及答案解析
- 2026年湖南中醫(yī)藥高等??茖W(xué)校單招職業(yè)技能測試題庫新版
- 駿馬奔騰啟新程盛世華章譜未來-2026年馬年學(xué)校元旦主持詞
- 剪刀式登高車專項(xiàng)施工方案
- 22863中級財(cái)務(wù)會(huì)計(jì)(一)機(jī)考綜合復(fù)習(xí)題
- 安慶師范學(xué)院論文格式
- 專業(yè)技術(shù)指導(dǎo)委員會(huì)工作總結(jié)報(bào)告
- 2025-2030智慧消防系統(tǒng)遠(yuǎn)程監(jiān)控平臺(tái)與城市火災(zāi)防控效果規(guī)劃研究
- 醫(yī)療器械經(jīng)營企業(yè)培訓(xùn)試卷及答案
- 27米三角形屋架設(shè)計(jì)
- 2025年大學(xué)《老撾語》專業(yè)題庫-老
評論
0/150
提交評論