2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年江西省宜春市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C

3.

4.

5.

6.

7.設(shè)二元函數(shù)z=xy,則點(diǎn)P0(0,0)A.為z的駐點(diǎn),但不為極值點(diǎn)B.為z的駐點(diǎn),且為極大值點(diǎn)C.為z的駐點(diǎn),且為極小值點(diǎn)D.不為z的駐點(diǎn),也不為極值點(diǎn)

8.

9.

10.

11.

12.

13.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

14.

15.A.A.1/2B.1C.2D.e16.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

17.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn)18.A.A.

B.

C.

D.

19.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有

A.f(x)對(duì)于g(x)是高階的無(wú)窮小量

B.f(x)對(duì)于g(x)是低階的無(wú)窮小量

C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量

D.f(x)與g(x)為等價(jià)無(wú)窮小量

20.

二、填空題(20題)21.微分方程y+9y=0的通解為________.

22.

23.24.25.廣義積分.26.27.直線的方向向量為________。28.

29.冪級(jí)數(shù)的收斂半徑為______.

30.

31.32.33.冪級(jí)數(shù)的收斂半徑為______.

34.

35.微分方程y+y=sinx的一個(gè)特解具有形式為

36.過(guò)原點(diǎn)且與直線垂直的平面方程為______.37.設(shè),則y'=________。

38.設(shè)函數(shù)y=x2lnx,則y=__________.

39.40.三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.求微分方程的通解.

43.

44.

45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.49.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).50.證明:51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

52.53.

54.將f(x)=e-2X展開為x的冪級(jí)數(shù).

55.求微分方程y"-4y'+4y=e-2x的通解.

56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.58.59.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)61.

62.

63.設(shè)y=ln(1+x2),求dy。

64.

65.

66.

67.

68.

69.求∫xlnxdx。

70.五、高等數(shù)學(xué)(0題)71.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要六、解答題(0題)72.

參考答案

1.C解析:

2.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。

3.B解析:

4.A

5.C解析:

6.C解析:

7.A

8.B

9.D

10.D

11.C解析:

12.A

13.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

14.D

15.C

16.A

17.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn);(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

18.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

19.C

20.A

21.

本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.

22.23.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

24.25.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

26.本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y一3z=0.27.直線l的方向向量為28.e-1/2

29.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

30.0

31.e-232.033.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

34.-sinx

35.36.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

37.

38.39.F(sinx)+C.

本題考查的知識(shí)點(diǎn)為不定積分的換元法.

40.41.函數(shù)的定義域?yàn)?/p>

注意

42.

43.

44.

45.

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

列表:

說(shuō)明

50.

51.

52.

53.由一階線性微分方程通解公

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論