合肥數(shù)學中考考點_第1頁
合肥數(shù)學中考考點_第2頁
合肥數(shù)學中考考點_第3頁
合肥數(shù)學中考考點_第4頁
合肥數(shù)學中考考點_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

WORD(可編輯版本)———合肥數(shù)學中考考點可以說每一個人從小時候開始學數(shù)數(shù)起,最先接觸到的數(shù)學就是代數(shù)學。而數(shù)學作為一個研究“數(shù)”的學科,代數(shù)學也是數(shù)學最重要的組成部分之一。今天我在這給大家整理了一些合肥數(shù)學中考考點,我們一起來看看吧!

合肥數(shù)學中考考點

1.解直角三角形

1.1.銳角三角函數(shù)

銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。

如果∠a是Rt△ABC的一個銳角,則有

1.2.銳角三角函數(shù)的計算

1.3.解直角三角形

在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。

2.直線與圓的位置關系

2.1.直線與圓的位置關系

當直線與圓有兩個公共點時,叫做直線與圓相交;當直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當直線與圓沒有公共點時,叫做直線與圓相離。

直線與圓的位置關系有以下定理:

直線與圓相切的判定定理:

經過半徑的外端并且垂直這條半徑的直線是圓的切線。

圓的切線性質:

經過切點的半徑垂直于圓的切線。

2.2.切線長定理

從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。

切線長定理:過圓外一點所作的圓的兩條切線長相等。

2.3.三角形的內切圓

與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形的三條角平分線的交點。

3.三視圖與表面展開圖

3.1.投影

物體在光線的照射下,在某個平面內形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。

可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。

3.2.簡易幾何體的三視圖

物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側投影面上的正投影叫做左視圖。

主視圖、左視圖和俯視圖合稱三視圖。

產生主視圖的投影線方向也叫做主視方向。

3.3.由三視圖描述幾何體

三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。

3.4.簡易幾何體的表面展開圖

將幾何體沿著某些棱“剪開”,并使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。

圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉所成的面就是圓柱的側面,AD不論轉動到哪個位置,都是圓柱的母線。

圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉一周,它的其余各邊所成的面圍成的一個幾何體。直角邊BC旋轉所成的面就是圓錐的底面,斜邊AB旋轉所成的面就是圓錐的側面,斜邊AB不論轉動到哪個位置,都叫做圓錐的母線。

數(shù)學中考考點分析

一、函數(shù)

①位置的確定與平面直角坐標系

1、平面直角坐標系內點的特征

2、平面直角坐標系內點坐標的符號與點的象限位置

3、對稱問題:P(x,y)→Q(x,-y)關于x軸對稱P(x,y)→Q(-x,y)關于y軸對稱P(x,y)→Q(-x,-y)關于原點對稱

4、變量、自變量、因變量、函數(shù)的定義

5、函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法)56、函數(shù)的圖象:變量的變化趨勢描述

②一次函數(shù)與正比例函數(shù)

7、一次函數(shù)的定義與正比例函數(shù)的定義

8、一次函數(shù)的圖象:直線,畫法

9、一次函數(shù)的性質(增減性)

10、一次函數(shù)y=kx+b(k≠0)中k、b符號與圖象位置

11、待定系數(shù)法求一次函數(shù)的解析式(一設二列三解四回)

12、一次函數(shù)的平移問題

13、一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關系(圖象法)

14、一次函數(shù)的實際應用

15、一次函數(shù)的綜合應用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合

③反比例函數(shù)

16、反比例函數(shù)的定義

17、反比例函數(shù)解析式的確定

18、反比例函數(shù)的圖象:雙曲線

19、反比例函數(shù)的性質(增減性質)

20、反比例函數(shù)的實際應用

數(shù)學中考考點

二次函數(shù)(quadraticfunction)是指未知數(shù)的次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般的,自變量x和因變量y之間存在如下關系:

一般式

y=ax∧2;+bx+c(a≠0,a、b、c為常數(shù)),頂點坐標為(-b/2a,-(4ac-b∧2)/4a);

頂點式

y=a(x+m)∧2+k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2+k(a≠0,a、h、k為常數(shù)),頂點坐標為(-m,k)對稱軸為x=-m,頂點的位置特征和圖像的開口方向與函數(shù)y=ax∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;

交點式

y=a(x-x1)(x-x2)僅限于與x軸有交點A(x1,0)和B(x2,0)的拋物線;

重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下。a的肯定值還可以決定開口大小,a的肯定值越大開口就越小,a的肯定值越小開口就越大。

牛頓插值公式(已知三點求函數(shù)解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導出交點式的系數(shù)a=y1/(x1_x2)(y1為截距)

求根公式

二次函數(shù)表達式的右邊通常為二次三項式。

求根公式

x是自變量,y是x的二次函數(shù)

x1,x2=-b±(√(b^2-4ac))/2a

(即一元二次方程求根公式)(如右圖)

求根的方法還有因式分解法和配方法

在平面直角坐標系中作出二次函數(shù)y=2x的平方的圖像,

可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。

不同的二次函數(shù)圖像

如果所畫圖形準確無誤,那么二次函數(shù)將是由一般式平移得到的。

注意:草圖要有1本身圖像,旁邊注明函數(shù)。

2畫出對稱軸,并注明X=什么

3與X軸交點坐標,與Y軸交點坐標,頂點坐標。拋物線的性質

軸對稱

1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

頂點

2.拋物線有一個頂點P,坐標為P(-b/2a,4ac-b^2;)/4a)

當-b/2a=0時,P在y軸上;當Δ=b^2;-4ac=0時,P在x軸上。

開口

3.二次項系數(shù)a決定拋物線的開口方向和大小。

當a0時,拋物線向上開口;當a0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

決定對稱軸位置的因素

4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

當a與b同號時(即ab0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a0,所以b/2a要大于0,所以a、b要同號

當a與b異號時(即ab0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號

可簡易記憶為左同右異,即當a與b同號時(即ab0),對稱軸在y軸左

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論