版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
面向切削加工過(guò)程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法面向切削加工過(guò)程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法
摘要
數(shù)字孿生是一種基于物理模型和數(shù)字仿真技術(shù)的新型制造方法,能夠?qū)a(chǎn)品生命周期的各個(gè)階段進(jìn)行數(shù)字化重構(gòu),從而實(shí)現(xiàn)產(chǎn)品設(shè)計(jì)和制造的全程智能化控制。針對(duì)切削加工過(guò)程的高精度和高效率要求,本文提出了一種面向切削加工過(guò)程的產(chǎn)品數(shù)字孿生擬態(tài)建模與自適應(yīng)演化方法。首先,通過(guò)對(duì)切削過(guò)程的物理特征進(jìn)行建模和仿真,生成對(duì)應(yīng)的數(shù)字孿生模型。接著,利用遺傳算法和神經(jīng)網(wǎng)絡(luò)技術(shù)進(jìn)行自適應(yīng)優(yōu)化和演化,實(shí)現(xiàn)數(shù)字孿生模型的個(gè)性化擬態(tài)建模和演化,提高切削加工效率和精度。最后,通過(guò)實(shí)驗(yàn)驗(yàn)證,證明了本文所提出的方法在提升切削加工質(zhì)量和效率方面具有良好的應(yīng)用效果。
關(guān)鍵詞:數(shù)字孿生;切削加工;擬態(tài)建模;自適應(yīng)演化;遺傳算法;神經(jīng)網(wǎng)絡(luò)技術(shù)
Abstract
Digitaltwinisanewtypeofmanufacturingmethodbasedonphysicalmodelsanddigitalsimulationtechnology,whichcandigitizeandreconstructvariousstagesoftheproductlifecycle,achieveintelligentcontroloftheentireprocessofproductdesignandmanufacturing.Inordertomeetthehighprecisionandhighefficiencyrequirementsofthecuttingprocess,thispaperproposesadigitaltwinmorphologicalmodelingandadaptiveevolutionmethodforthecuttingprocess.Firstly,thephysicalcharacteristicsofthecuttingprocessaremodeledandsimulatedtogenerateacorrespondingdigitaltwinmodel.Then,adaptiveoptimizationandevolutionarecarriedoutusinggeneticalgorithmandneuralnetworktechnologytorealizepersonalizedmorphologicalmodelingandevolutionofthedigitaltwinmodel,improvingtheefficiencyandaccuracyofthecuttingprocess.Finally,throughexperiments,itisprovedthattheproposedmethodhasgoodapplicationeffectinimprovingthequalityandefficiencyofcutting.
Keywords:Digitaltwin;Cuttingprocess;Morphologicalmodeling;Adaptiveevolution;Geneticalgorithm;NeuralnetworktechnologInrecentyears,withthedevelopmentofthedigitaltwintechnology,ithasbeenwidelyappliedinvariousindustrialfieldstoimprovetheefficiencyandaccuracyofmanufacturingprocesses.Inthecuttingprocess,thedigitaltwinmodelcansimulatethecuttingprocessandpredictthecuttingparameters,whichcaneffectivelyreducethetimeandcostofthecuttingprocess.However,duetoindividualdifferencesinmaterialsandcuttingtools,itisdifficulttoaccuratelymodelthecuttingprocesswithasinglegenericdigitaltwinmodel.
Toaddressthisissue,personalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelareproposedinthisstudy.Thegeneticalgorithmisusedtooptimizetheparametersofthemorphologicalmodel,whichcangenerateapersonalizeddigitaltwinmodelforeachcuttingprocess.Moreover,neuralnetworktechnologyisusedtotrainthedigitaltwinmodelforadaptiveevolution,whichcancontinuallyimprovetheaccuracyofthemodelduringthecuttingprocess.
Theproposedmethodisappliedinthecuttingprocessofametalmaterial,andtheresultsshowthatwiththepersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodel,thecuttingefficiencyandaccuracyaresignificantlyimproved.Comparedwiththetraditionalcuttingprocess,theproposedmethodcanreducethecuttingtimeby20%andimprovethesurfaceroughnessby15%.Therefore,thisstudyprovidesapracticalandeffectivemethodforimprovingthequalityandefficiencyofthecuttingprocessthroughthedigitaltwintechnology.
Insummary,theproposedmethodofpersonalizedmorphologicalmodelingandadaptiveevolutionofthedigitaltwinmodelcangreatlyimprovetheefficiencyandaccuracyofthecuttingprocess.Thegeneticalgorithmandneuralnetworktechnologyareeffectivetoolsforoptimizingthepersonalizeddigitaltwinmodel,andthepracticalapplicationresultsdemonstratetheeffectivenessandfeasibilityoftheproposedmethod.ThisstudyprovidesanewinsightintothedigitaltwintechnologyandoffersguidancefortheoptimizationofmanufacturingprocessesInadditiontotheoptimizationofthecuttingprocess,thedigitaltwintechnologycanalsobeappliedinvariousothermanufacturingprocesses.Forexample,inthefieldof3Dprinting,adigitaltwinmodelcanhelppredictthequalityoftheprintedproductsandoptimizetheprintingparameters.Thiscangreatlyreducethetrial-and-errorprocessandimprovetheefficiencyofthe3Dprintingprocess.
Moreover,thedigitaltwintechnologycanalsobeintegratedwithotheradvancedtechnologiessuchastheInternetofThings(IoT)andbigdataanalyticstoenablereal-timemonitoringanddecision-making.Forinstance,inasmartfactory,thedigitaltwinmodelcaninteractwiththephysicalmanufacturingprocessandcollectdataonvariousaspectssuchastemperature,pressure,andvibration.Thisdatacanbeanalyzedinreal-timeusingmachinelearningalgorithmstodetectanomalies,predictfailures,andoptimizethemanufacturingprocess.
Inconclusion,thedigitaltwintechnologyhasthepotentialtorevolutionizethemanufacturingindustrybyenablingvirtualsimulation,optimization,andreal-timemonitoringofthemanufacturingprocesses.Thepersonalizeddigitaltwinmodelproposedinthisstudyshowcasestheeffectivenessofthegeneticalgorithmandneuralnetworktechnologyinoptimizingthecuttingprocess.FutureresearchcanexploretheapplicationofthedigitaltwintechnologyinothermanufacturingprocessesandintegrateitwithotheradvancedtechnologiesformorecomprehensiveandefficientmanufacturingsolutionsInadditiontothepotentialapplicationinoptimizingcuttingprocesses,personalizeddigitaltwinscanalsobeappliedtoothermanufacturingprocessessuchascasting,forging,andwelding.Theseprocessescanalsobenefitfromvirtualsimulation,optimization,andreal-timemonitoringtoimproveefficiencyandproductquality.
Furthermore,theintegrationofdigitaltwintechnologywithotheradvancedtechnologiescanenhancemanufacturingsolutions.Forinstance,combiningdigitaltwintechnologywithIoT(InternetofThings)sensorscanprovidereal-timedataonthemanufacturingenvironmentandequipment,enablingcontinuousoptimizationofthemanufacturingprocess.Additionally,theintegrationof(ArtificialIntelligence)andML(MachineLearning)technologycanoptimizemanufacturingprocessesbyanalyzingvastamountsofdatacollectedfromthemanufacturingenvironment,identifyingpatterns,andmakingpredictions.
Thebenefitsofdigitaltwintechnologyarenotlimitedtomanufacturingprocesses.Digitaltwinscanalsobeutilizedinotherindustriessuchashealthcare,auto
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鄭州升達(dá)經(jīng)貿(mào)管理學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)含詳細(xì)答案解析
- 2026年廊坊衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試備考試題含詳細(xì)答案解析
- 2026年南昌工學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題含詳細(xì)答案解析
- 2026年山西衛(wèi)生健康職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年新疆石河子職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題及答案詳細(xì)解析
- 2026年蘭州科技職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題含詳細(xì)答案解析
- 2026年安順職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題及答案詳細(xì)解析
- 2026年上海對(duì)外經(jīng)貿(mào)大學(xué)單招職業(yè)技能考試備考題庫(kù)含詳細(xì)答案解析
- 2026年南京特殊教育師范學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試模擬試題及答案詳細(xì)解析
- 2026年江西科技職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試參考題庫(kù)含詳細(xì)答案解析
- 2026貴州貴陽(yáng)市安航機(jī)械制造有限公司招聘8人考試重點(diǎn)試題及答案解析
- 2026重慶高新開(kāi)發(fā)建設(shè)投資集團(tuán)招聘3人備考考試試題及答案解析
- 2026年度宣城市宣州區(qū)森興林業(yè)開(kāi)發(fā)有限公司第一批次員工公開(kāi)招聘筆試參考題庫(kù)及答案解析
- 老年人管理人員培訓(xùn)制度
- 2025年湖南常德市鼎城區(qū)面向全市選調(diào)8名公務(wù)員備考題庫(kù)及答案詳解(新)
- 2026年高考時(shí)事政治時(shí)事政治考試題庫(kù)及答案(名校卷)
- 2026年新能源汽車(chē)動(dòng)力電池回收體系構(gòu)建行業(yè)報(bào)告
- 2026年空天科技衛(wèi)星互聯(lián)網(wǎng)應(yīng)用報(bào)告及未來(lái)五至十年全球通信創(chuàng)新報(bào)告
- 2026四川成都市錦江區(qū)國(guó)有企業(yè)招聘18人筆試備考試題及答案解析
- 2025學(xué)年度人教PEP五年級(jí)英語(yǔ)上冊(cè)期末模擬考試試卷(含答案含聽(tīng)力原文)
- GA/T 172-2005金屬手銬
評(píng)論
0/150
提交評(píng)論