版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,,則的值為()A. B. C. D.2.設向量,且,則實數(shù)的值為()A. B. C. D.3.己知向量,.若,則m的值為()A. B.4 C.- D.-44.經(jīng)過點,和直線相切,且圓心在直線上的圓方程為()A. B.C. D.5.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知是平面內(nèi)兩個互相垂直的向量,且,若向量滿足,則的最大值是()A.1 B. C.3 D.7.的值為()A. B. C. D.8.的周期為()A. B. C. D.9.在區(qū)間上任取兩個實數(shù),則滿足的概率為()A. B. C. D.10.設的三個內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或二、填空題:本大題共6小題,每小題5分,共30分。11.已知正四棱錐的底面邊長為,高為,則該四棱錐的側(cè)面積是______________12.已知向量,,且,點在圓上,則等于.13.已知,則的最小值為_______.14.設為數(shù)列的前項和,若,則數(shù)列的通項公式為__________.15.在等比數(shù)列中,,,則______________.16.已知數(shù)列為等差數(shù)列,,,若,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某同學利用暑假時間到一家商場勤工儉學,該商場向他提供了三種付酬方案:第一種,每天支付元,沒有獎金;第二種,每天的底薪元,另有獎金.第一天獎金元,以后每天支付的薪酬中獎金比前一天的獎金多元;第三種,每天無底薪,只有獎金.第一天獎金元,以后每天支付的獎金是前一天的獎金的倍.(1)工作天,記三種付費方式薪酬總金額依次為、、,寫出、、關(guān)于的表達式;(2)該學生在暑假期間共工作天,他會選擇哪種付酬方式?18.設數(shù)列滿足,;數(shù)列的前項和為,且(1)求數(shù)列和的通項公式;(2)若,求數(shù)列的前項和.19.如圖,在四棱錐中,底面,底面為矩形,為的中點,且,,.(1)求證:平面;(2)若點為線段上一點,且,求四棱錐的體積.20.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當取何值時,最大?的最大值是多少?21.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由,得,然后根據(jù)遞推公式逐項計算出、的值,即可得出的值.【詳解】,,則,,,因此,,故選B.【點睛】本題考查數(shù)列中相關(guān)項的計算,解題的關(guān)鍵就是遞推公式的應用,考查計算能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)向量垂直時數(shù)量積為0,列方程求出m的值.【詳解】向量,(m+1,﹣m),當⊥時,?0,即﹣(m+1)﹣2m=0,解得m.故選D.【點睛】本題考查了平面向量的數(shù)量積的坐標運算,考查了向量垂直的條件轉(zhuǎn)化,是基礎(chǔ)題.3、B【解析】
根據(jù)兩個向量垂直的坐標表示列方程,解方程求得的值.【詳解】依題意,由于,所以,解得.故選B.【點睛】本小題主要考查兩個向量垂直的坐標表示,考查向量減法的坐標運算,屬于基礎(chǔ)題.4、B【解析】
設出圓心坐標,由圓心到切線的距離和它到點的距離都是半徑可求解.【詳解】由題意設圓心為,則,解得,即圓心為,半徑為.圓方程為.故選:B.【點睛】本題考查求圓的標準方程,考查直線與圓的位置關(guān)系.求出圓心坐標與半徑是求圓標準方程的基本方法.5、C【解析】
由,即可判斷.【詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【點睛】本題主要考查了判斷角的終邊所在象限,屬于基礎(chǔ)題.6、D【解析】
設出平面向量的夾角,求出的夾角,最后利用平面向量數(shù)量積的運算公式進行化簡等式,最后利用輔助角公式求出的最大值.【詳解】設平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以平面向量的夾角為,因為是平面內(nèi)兩個互相垂直的向量,所以.,,,其中,顯然當時,有最大值,即.故選:D【點睛】本題考查平面向量數(shù)量積的性質(zhì)及運算,屬于中檔題.7、B【解析】
直接利用誘導公式結(jié)合特殊角的三角函數(shù)求解即可.【詳解】,故選B.【點睛】本題主要考查誘導公式以及特殊角的三角函數(shù),意在考查對基礎(chǔ)知識的掌握情況,屬于簡單題.8、D【解析】
根據(jù)正弦型函數(shù)最小正周期的結(jié)論即可得到結(jié)果.【詳解】函數(shù)的最小正周期故選:【點睛】本題考查正弦型函數(shù)周期的求解問題,關(guān)鍵是明確正弦型函數(shù)的最小正周期.9、B【解析】試題分析:因為,在區(qū)間上任取兩個實數(shù),所以區(qū)域的面積為4,其中滿足的平面區(qū)域面積為,故滿足的概率為,選B.考點:本題主要考查幾何概型概率計算.點評:簡單題,幾何概型概率的計算,關(guān)鍵是認清兩個“幾何度量”.10、C【解析】
的三個內(nèi)角成等差數(shù)列,可得角A、C的關(guān)系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因為,解得或.①當時,;②當時,,故選C.【點睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質(zhì)、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強,屬于中檔題;解題中主要是通過消元構(gòu)造關(guān)于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對式子進行化解是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】四棱錐的側(cè)面積是12、【解析】試題分析:因為且在圓上,所以,解得,所以.考點:向量運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼?,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).13、【解析】
運用基本不等式求出結(jié)果.【詳解】因為,所以,,所以,所以最小值為【點睛】本題考查了基本不等式的運用求最小值,需要滿足一正二定三相等.14、,【解析】
令時,求出,再令時,求出的值,再檢驗的值是否符合,由此得出數(shù)列的通項公式.【詳解】當時,,當時,,不合適上式,當時,,不合適上式,因此,,.故答案為,.【點睛】本題考查利用前項和求數(shù)列的通項,考查計算能力,屬于中等題.15、1【解析】
根據(jù)已知兩項求出數(shù)列的公比,然后根據(jù)等比數(shù)列的通項公式進行求解即可.【詳解】∵a1=1,a5=4∴公比∴∴該等比數(shù)列的通項公式a3=11=1故答案為:1.【點睛】本題主要考查了等比數(shù)列的通項公式,一般利用基本量的思想,屬于基礎(chǔ)題.16、【解析】
設等差數(shù)列的公差為,根據(jù)已知條件列方程組解出和的值,可求出的表達式,再由可解出的值.【詳解】設等差數(shù)列的公差為,由,得,解得,,,因此,,故答案為:.【點睛】本題考查等差數(shù)列的求和,對于等差數(shù)列的問題,通常建立關(guān)于首項和公差的方程組求解,考查方程思想,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,;(2)第三種,理由見解析.【解析】
(1)三種支付方式每天支付的金額依次為數(shù)列、、,可知數(shù)列為常數(shù)數(shù)列,數(shù)列是以為首項,以為公差的等差數(shù)列,數(shù)列是以為首項,以為公比的等比數(shù)列,利用等差數(shù)列和等比數(shù)列求和公式可計算出、、關(guān)于的表達式;(2)利用(1)中的結(jié)論,計算出、、的值,比較大小后可得出結(jié)論.【詳解】(1)設三種支付方式每天支付的金額依次為數(shù)列、、,它們的前項和分別為、、,第一種付酬方式每天所付金額組成數(shù)列為常數(shù)列,且,所以;第二種付酬方式每天所付金額組成數(shù)列是以為首項,以為公差的等差數(shù)列,所以;第三種付酬方式每天所付金額組成數(shù)列是以為首項,以為公比的等比數(shù)列,所以;(2)由(1)知,當時,,,,則.因此,該學生在暑假期間共工作天,選第三種付酬方式較好.【點睛】本題考查等差數(shù)列和等比數(shù)列的應用,涉及等差數(shù)列和等比數(shù)列求和公式的應用,考查計算能力,屬于中等題.18、(1),;(2)【解析】
(1)分別利用累加法、數(shù)列的遞推公式得到數(shù)列和數(shù)列的通項公式.(2)利用數(shù)列求和的錯位相減即可得到數(shù)列的前項和.【詳解】(1),……,,以上個式子相加得:當時,=當時,,符合上式,(2)①②①-②得【點睛】已知求數(shù)列的通項公式時,可采用累加法得到通項公式,通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式(等差等比數(shù)列相乘)的前項和采用錯位相減法.19、(1)見解析(2)6【解析】
(1)連接交于點,得出點為的中點,利用中位線的性質(zhì)得出,再利用直線與平面平行的判定定理可得出平面;(2)過作交于,由平面,得出平面,可而出,結(jié)合,可證明出平面,可得出,并計算出,利用平行線的性質(zhì)求出的長,再利用錐體的體積公式可計算出四棱錐的體積.【詳解】(1)連接交于,連接.四邊形為矩形,∴為中點.又為中點,∴.又平面,平面,∴平面;(2)過作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.連接,則,又是矩形,易證,而,,得,由得,∴.又矩形的面積為8,∴.【點睛】本題考查直線與平面平行的證明,以及錐體體積的計算,直線與平面平行的證明,常用以下三種方法進行證明:(1)中位線平行;(2)平行四邊形對邊平行;(3)構(gòu)造面面平行來證明線面平行.一般遇到中點找中點,根據(jù)已知條件類型選擇合適的方法證明.20、當時,最大,最大值為【解析】
設,,在中,由余弦定理,基本不等式可得,根據(jù)三角形的面積公式即可求解.【詳解】解:設,在中,由余弦定理得:,由基本不等式,,可得,當且僅當時取等號,∴,當且僅當時取等號,此時,∴當時,最大,最大值為.【點睛】本題主要考查余弦定理,基本不等式,三角形的面積公式的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.21、(1)見證明;(2)見證明【解析】
(1)設與的交點為,連結(jié),證明,再由線面平行的判定可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025浙江紹興市中等專業(yè)學校合同制人員(融媒體工作技術(shù)員)招聘1人備考核心題庫及答案解析
- 2025西安高新區(qū)第九初級中學招聘教師參考考試題庫及答案解析
- 2025年商丘柘城縣消防救援大隊招錄政府專職消防員53名考試核心題庫及答案解析
- 2025中國煤科煤礦災害防控全國重點實驗室研發(fā)崗位招聘6人考試重點題庫及答案解析
- 2025年西安交通大學第一附屬醫(yī)院醫(yī)學影像科招聘考試重點試題及答案解析
- 2025年西安旅游股份有限公司招聘筆試重點試題及答案解析
- 2025遼寧建筑職業(yè)學院赴高?,F(xiàn)場招聘10人模擬筆試試題及答案解析
- 2025廣西百色市西林縣消防救援大隊政府專職消防員招聘15人考試重點題庫及答案解析
- 2025江蘇南京鼓樓醫(yī)院人力資源服務中心招聘4人考試核心題庫及答案解析
- 2026中證中小投資者服務中心招聘考試重點試題及答案解析
- Know Before You Go:趣談“一帶一路”國家智慧樹知到期末考試答案章節(jié)答案2024年貴州理工學院
- JBT 11270-2024 立體倉庫組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范(正式版)
- 求職OMG-大學生就業(yè)指導與技能開發(fā)智慧樹知到期末考試答案章節(jié)答案2024年中國海洋大學
- JBT 7387-2014 工業(yè)過程控制系統(tǒng)用電動控制閥
- A課堂懲罰游戲
- 整理收納師行業(yè)分析
- GB/T 228.1-2021金屬材料拉伸試驗第1部分:室溫試驗方法
- 氫能與燃料電池-課件-第五章-制氫技術(shù)
- 2023QC小組活動基礎(chǔ)知識培訓
- 生理學期末考試復習試題庫及答案
- 旅游地理學 國家公園建設與管理
評論
0/150
提交評論