江蘇省宿遷市2023年高一數(shù)學第二學期期末檢測試題含解析_第1頁
江蘇省宿遷市2023年高一數(shù)學第二學期期末檢測試題含解析_第2頁
江蘇省宿遷市2023年高一數(shù)學第二學期期末檢測試題含解析_第3頁
江蘇省宿遷市2023年高一數(shù)學第二學期期末檢測試題含解析_第4頁
江蘇省宿遷市2023年高一數(shù)學第二學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某單位有職工160人,其中業(yè)務(wù)員有104人,管理人員32人,后勤服務(wù)人員24人,現(xiàn)用分層抽樣法從中抽取一個容量為20的樣本,則抽取管理人員()A.3人 B.4人 C.7人 D.12人2.一個人連續(xù)射擊三次,則事件“至少擊中兩次”的對立事件是()A.恰有一次擊中 B.三次都沒擊中C.三次都擊中 D.至多擊中一次3.已知半圓C:(),A、B分別為半圓C與x軸的左、右交點,直線m過點B且與x軸垂直,點P在直線m上,縱坐標為t,若在半圓C上存在點Q使,則t的取值范圍是()A. B.C. D.4.已知扇形圓心角為,面積為,則扇形的弧長等于()A. B. C. D.5.角的終邊經(jīng)過點且,則的值為()A.-3 B.3 C.±3 D.56.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為()A. B. C. D.7.已知函數(shù)圖象的一條對稱軸是,則的值為()A.5 B. C.3 D.8.高一數(shù)學興趣小組共有5人,編號為.若從中任選3人參加數(shù)學競賽,則選出的參賽選手的編號相連的概率為()A. B. C. D.9.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.10.己知函數(shù)的最小值為,最大值為,若,則數(shù)列是()A.公差不為0的等差數(shù)列 B.公比不為1的等比數(shù)列C.常數(shù)數(shù)列 D.以上都不對二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的反函數(shù)的圖象經(jīng)過點,那么實數(shù)的值等于____________.12.已知數(shù)列滿足:,,則數(shù)列的前項的和_______.13.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.14.在中,角,,的對邊分別為,,,若,則________.15.已知且,則________16.若,則=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計劃在該空地上征地建一個矩形的花壇和一個等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設(shè),征地面積為,求的表達式,并寫出定義域;(2)當滿足取得最大值時,建造效果最美觀.試求的最大值,以及相應(yīng)角的值.18.已知α為銳角,且tanα=(I)求tanα+(II)求5sin19.已知為等差數(shù)列,且,.(1)求的通項公式;(2)若等比數(shù)列滿足,,求數(shù)列的前項和公式.20.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.21.如圖,在四棱錐P?ABCD中,AB//CD,且.(1)證明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A?PB?C的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)分層抽樣原理求出應(yīng)抽取的管理人數(shù).【詳解】根據(jù)分層抽樣原理知,應(yīng)抽取管理人員的人數(shù)為:故選:B【點睛】本題考查了分層抽樣原理應(yīng)用問題,是基礎(chǔ)題.2、D【解析】

根據(jù)判斷的原則:“至少有個”的對立是“至多有個”.【詳解】根據(jù)判斷的原則:“至少擊中兩次”的對立事件是“至多擊中一次”,故選D.【點睛】至多至少的對立事件問題,可以采用集合的補集思想進行轉(zhuǎn)化.如“至少有個”則對應(yīng)“”,其補集應(yīng)為“”.3、A【解析】

根據(jù)題意,設(shè)PQ與x軸交于點T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x軸上方、下方和x軸上三種情況討論,分析|BT|的最值,即可得t的范圍,綜合可得答案.【詳解】根據(jù)題意,設(shè)PQ與x軸交于點T,則|PB|=|t|,由于BP與x軸垂直,且∠BPQ,則在Rt△PBT中,|BT||PB||t|,當P在x軸上方時,PT與半圓有公共點Q,PT與半圓相切時,|BT|有最大值3,此時t有最大值,當P在x軸下方時,當Q與A重合時,|BT|有最大值2,|t|有最大值,則t取得最小值,t=0時,P與B重合,不符合題意,則t的取值范圍為[,0)];故選A.【點睛】本題考查直線與圓方程的應(yīng)用,涉及直線與圓的位置關(guān)系,屬于中檔題.4、C【解析】

根據(jù)扇形面積公式得到半徑,再計算扇形弧長.【詳解】扇形弧長故答案選C【點睛】本題考查了扇形的面積和弧長公式,解出扇形半徑是解題的關(guān)鍵,意在考查學生的計算能力.5、B【解析】

根據(jù)三角函數(shù)的定義建立方程關(guān)系即可.【詳解】因為角的終邊經(jīng)過點且,所以則解得【點睛】本題主要考查三角函數(shù)的定義的應(yīng)用,應(yīng)注意求出的b為正值.6、C【解析】

試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側(cè)面展開圖為長為,寬為1,所以所得幾何體的側(cè)面積為.故選C.7、D【解析】

化簡函數(shù)f(x)=acosx+sinx為一個角的一個三角函數(shù)的形式,利用圖象關(guān)于直線對稱,就是時,函數(shù)取得最值,求出a即可.【詳解】函數(shù)f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其圖象關(guān)于直線對稱,所以θ,θ,所以tanθ=a,故答案為D【點睛】本題考查正弦函數(shù)的對稱性,考查計算能力,邏輯思維能力,是基礎(chǔ)題.8、A【解析】

先考慮從個人中選取個人參加數(shù)學競賽的基本事件總數(shù),再分析選出的參賽選手的編號相連的事件數(shù),根據(jù)古典概型的概率計算得到結(jié)果.【詳解】因為從個人中選取個人參加數(shù)學競賽的基本事件有:,共種,又因為選出的參賽選手的編號相連的事件有:,共種,所以目標事件的概率為.故選:A.【點睛】本題考查古典概型的簡單應(yīng)用,難度較易.求解古典概型問題的常規(guī)思路:先計算出基本事件的總數(shù),然后計算出目標事件的個數(shù),目標事件的個數(shù)比上基本事件的總數(shù)即可計算出對應(yīng)的概率.9、C【解析】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數(shù),共有種方法,因為,所以隨機選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.10、C【解析】

先根據(jù)判別式法求出的取值范圍,進而求得和的關(guān)系,再展開算出分析即可.【詳解】設(shè),則,因為,故,故二次函數(shù),整理得,故與為方程的兩根,所以為常數(shù).故選C.【點睛】本題主要考查判別式法求分式函數(shù)范圍的問題,再根據(jù)二次函數(shù)的韋達定理進行求解分析即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)原函數(shù)與其反函數(shù)的圖象關(guān)于直線對稱,可得函數(shù)的圖象經(jīng)過點,由此列等式可得結(jié)果.【詳解】因為函數(shù)的反函數(shù)的圖象經(jīng)過點,所以函數(shù)的圖象經(jīng)過點,所以,即,解得.故答案為:【點睛】本題考查了原函數(shù)與其反函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.12、【解析】

通過令求出數(shù)列的前幾項,猜測是以為周期的周期數(shù)列,且每個周期內(nèi)都是以為首項,2為公比的等比數(shù)列.然后根據(jù)遞推式給予證明,最后由等比數(shù)列的前項和公式計算.【詳解】當時,,,,,,,當時,,,,,,,當時,,,,,,,猜測,是以為周期的周期數(shù)列,且每個周期內(nèi)都是以為首項,2為公比的等比數(shù)列.設(shè)中,即,∴,由于都是正整數(shù),所以,所以數(shù)列中第項開始大于3,前項是以為首項,2為公比的等比數(shù)列.,所以是以為周期的周期數(shù)列,所以.故答案為:.【點睛】本題考查等比數(shù)列的前項和,考查數(shù)列的周期性.解題關(guān)鍵是確定數(shù)列的周期性.方法采取的是從特殊到一般,猜想與證明.13、【解析】

利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案為-2..【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項,考查學生的計算能力,屬基礎(chǔ)題..14、【解析】

利用余弦定理與不等式結(jié)合的思想求解,,的關(guān)系.即可求解的值.【詳解】解:根據(jù)①余弦定理②由①②可得:化簡:,,,,,,此時,故得,即,.故答案為:.【點睛】本題主要考查了存在性思想,余弦定理與不等式結(jié)合的思想,界限的利用.屬于中檔題.15、【解析】

根據(jù)數(shù)列極限的方法求解即可.【詳解】由題,故.又.故.故.故答案為:【點睛】本題主要考查了數(shù)列極限的問題,屬于基礎(chǔ)題型.16、【解析】.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值為,此時【解析】

(1)連接,在中,求出,進而求出面積以及角的范圍;(2)令,再求出的范圍,轉(zhuǎn)化為二次函數(shù)即可求出最大值,以及相應(yīng)角的值.【詳解】(1)連接,在中,,(2),令,因為,所以,所以因為在上單調(diào)遞增,所以時有最大值為,此時【點睛】本題主要考查三角函數(shù)與實際應(yīng)用相結(jié)合,最終轉(zhuǎn)化為二次函數(shù)進行求解,這類問題的特點是通過現(xiàn)實生活的事例考查解決問題的能力、仔細理解題,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.18、(I)tanα+π【解析】試題分析:(1)根據(jù)兩角和差的正切公式,將式子展開,根據(jù)題干中的條件代入即可;(2)這是其次式的考查,上下同除以cosα(I)tanα+(II)因為tanα=1519、(1);(2).【解析】

本試題主要是考查了等差數(shù)列的通項公式的求解和數(shù)列的前n項和的綜合運用.、(1)設(shè)公差為,由已知得解得,(2),等比數(shù)列的公比利用公式得到和.20、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結(jié)果試題解析:(1)證明:連結(jié)AC1交A1C于點F,則F為AC1中點又D是AB中點,連結(jié)DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積21、(1)見解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,從而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論