版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制研究基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制研究
摘要:本文提出了一種基于線結(jié)構(gòu)光和優(yōu)化PID的剛?cè)狁詈蠙C械臂振動控制方法,旨在減小機械臂運動過程中的振動幅度,提高控制精度和穩(wěn)定性,為工業(yè)機器人的應(yīng)用提供技術(shù)支持。首先,基于線結(jié)構(gòu)光技術(shù)實現(xiàn)機械臂姿態(tài)測量,提取關(guān)鍵點位移信息,并建立起機械臂運動模型。然后,針對機械臂在運動過程中的振動問題,設(shè)計了基于優(yōu)化PID控制器的控制方法。在控制器參數(shù)優(yōu)化方面,采用了遺傳算法和粒子群優(yōu)化方法,提高了控制器的響應(yīng)速度和抗干擾能力。最后,通過實驗驗證,證明了該控制方法的有效性和實用性,實驗結(jié)果表明,相比傳統(tǒng)PID控制,該控制方法成功降低了機械臂的振動幅度,提高了機械臂的穩(wěn)定性和精度。
關(guān)鍵詞:線結(jié)構(gòu)光、剛?cè)狁詈蠙C械臂、振動控制、PID控制、優(yōu)化算法。
Abstract:Thispaperproposesavibrationcontrolmethodforrigid-flexiblecoupledmechanicalarmbasedonlinestructurelightandoptimizedPIDcontrol.Theaimistoreducethevibrationamplitudeduringthemovementofthemechanicalarm,improvethecontrolprecisionandstability,andprovidetechnicalsupportforindustrialrobotapplication.Firstly,themechanicalarmattitudeismeasuredbasedonthelinestructurelighttechnology,thekeypointdisplacementinformationisextracted,andthemechanicalarmmotionmodelisestablished.Then,aimingatthevibrationproblemofthemechanicalarmduringthemovement,acontrolmethodbasedonoptimizedPIDcontrollerisdesigned.Intermsofcontrollerparameteroptimization,geneticalgorithmandparticleswarmoptimizationmethodareadoptedtoimprovetheresponsespeedandanti-interferenceabilityofthecontroller.Finally,throughexperimentalverification,theeffectivenessandpracticalityofthecontrolmethodareproved.TheexperimentalresultsshowthatcomparedwithtraditionalPIDcontrol,thecontrolmethodsuccessfullyreducesthevibrationamplitudeofthemechanicalarmandimprovesthestabilityandaccuracyofthemechanicalarm.
keywords:linestructurelight,rigid-flexiblecoupledmechanicalarm,vibrationcontrol,PIDcontrol,optimizationalgorithmInrecentyears,therehasbeenagrowingdemandforhigh-precisionandflexiblemechanicalarmsinvariousindustries.However,thevibrationofthemechanicalarmduringoperationcansignificantlyaffectitsstability,accuracyandspeed,leadingtopoorperformanceandpotentialsafetyhazards.Therefore,itisessentialtodevelopeffectivevibrationcontrolstrategiesformechanicalarms.
Amongvariousvibrationcontrolmethods,thePIDcontrolhasbeenwidelyusedduetoitssimplicity,effectivenessandlowcost.However,traditionalPIDcontrolcannoteffectivelysuppressthevibrationoftherigid-flexiblecouplingmechanicalarm,whichisacommontypeofmechanicalarm.Therefore,anoptimization-basedPIDcontrolmethodisproposedinthispapertoimprovethevibrationsuppressionperformanceofthemechanicalarm.
Theproposedcontrolmethodcombineslinestructurelighttechnologyandoptimizationalgorithmtoachieveaccuratetrackingofthemechanicalarmtiptrajectoryandrobustvibrationsuppression.Thelinestructurelighttechnologyisusedtoobtainthepositionandorientationinformationofthemechanicalarmtipinreal-time,whichisfedbacktothecontroller.TheoptimizationalgorithmisemployedtosearchfortheoptimalPIDcontrolparametersthatmaximizethecontrolperformanceandminimizethevibrationamplitudeofthemechanicalarm.
Toevaluatetheeffectivenessandpracticalityofthecontrolmethod,experimentswereconductedonaflexiblemechanicalarm.Theexperimentalresultsshowthattheproposedcontrolmethodsuccessfullyreducesthevibrationamplitudeofthemechanicalarmandimprovesitsstabilityandaccuracy.ComparedwithtraditionalPIDcontrol,theproposedmethodachievesbettervibrationsuppressionperformanceandcaneffectivelyadapttodifferentoperatingconditions.
Inconclusion,theoptimization-basedPIDcontrolmethodproposedinthispaperprovidesapracticalsolutionforvibrationcontrolofrigid-flexiblecoupledmechanicalarms.Itcansignificantlyimprovetheperformanceandsafetyofmechanicalarmsinvariousapplications.FutureresearchcanfurtherrefineandoptimizethecontrolmethodandextendittomorecomplexmechanicalsystemsMoreover,besidestheoptimization-basedPIDcontrolmethod,therearealsoothercontrolstrategiesthatcanbeappliedinthevibrationcontrolofmechanicalsystems,suchasfuzzycontrol,neuralnetworkcontrol,andadaptivecontrol.Fuzzycontrolisamethodthatutilizesfuzzylogictodealwithcomplexanduncertainsystems.Itcaneffectivelyhandlenonlinearsystemswithimpreciseandincompleteinformation.Neuralnetworkcontrolisamethodthatusesartificialneuralnetworkstoapproximatethesystemdynamicsandobtainacontroloutput.Itcanachievehighprecisioncontrolandadaptabilitytovaryingconditions.Adaptivecontrolisamethodthatadjuststhecontrolparametersbasedonthesystem'sbehaviorandresponse.Itcanimprovethecontrolperformanceandstabilityofthesystem.
Furthermore,withthedevelopmentofadvancedsensingandactuationtechnologies,therearemoreopportunitiestoadvancethevibrationcontrolofmechanicalsystems.Forinstance,byutilizingsensorssuchasaccelerometers,straingauges,anddisplacementsensors,thevibrationbehaviorofmechanicalsystemscanbemonitoredinreal-time,leadingtomoreaccurateandefficientcontrol.Besides,byimplementingactuationtechnologiessuchaspiezoelectricactuators,magnetostrictiveactuators,andshapememoryalloys,thecontrolinputscanbemorepreciseandresponsive,leadingtobettervibrationsuppressionperformance.
Insummary,whiletheoptimization-basedPIDcontrolmethodproposedinthispaperiseffectiveinvibrationcontrolofmechanicalarms,therearealsoothercontrolstrategiesandadvancementsinsensingandactuationtechnologiesthatcanbeexploredandapplied.Continuousresearchanddevelopmentinthisfieldcancontributetotheimprovementofthesafety,efficiency,andreliabilityofvariousmechanicalsystemsFurthermore,itisimportanttoconsidertheapplication-specificrequirementsandconstraintsinimplementingvibrationcontrolstrategies.Mechanicalsystemsindifferentindustriesandenvironmentsmayhaveuniquefactorssuchassize,weight,speed,andprecisionthataffecttheirvibrationalbehaviorandaffecttheselectionandtuningofcontrolparameters.Forexample,intheaerospaceindustry,vibrationcontroliscrucialforensuringthestructuralintegrityandperformanceofaircraft,satellites,andlaunchvehicles.Theharshanddynamicconditionsinspaceandduringlaunchposesignificantchallengesfordesigningandintegratingvibrationcontrolsystems.Similarly,inthemanufacturingindustry,vibrationcontrolisessentialforreducingnoise,improvingproductquality,andprolongingequipmentlifespan.Thetrade-offsbetweencontrolperformance,cost,andenergyconsumptionneedtobecarefullyassessedandoptimizedinordertoachievethedesiredoutcomes.
Anotherareaofresearchthatcanenhancevibrationcontrolistheintegrationofartificialintelligence()techniques.Machinelearningalgorithmscanenableadaptiveandrobustcontrolapproachesthatcanautomaticallyadjustthecontrolparametersbasedonchangingenvironmentalconditionsandoperatingstates.Forexample,reinforcementlearningalgorithmscanlearnoptimalcontrolpoliciesbytrialanderrorinteractionswiththesystem,whileneuralnetworkscanprovidenon-linearmappingbetweeninputandoutputsignals.Theuseofinvibrationcontrolcanalsoenablepredictivemaintenancecapabilitiesbyanalyzingvibrationdataanddetectinganomaliesandfaultsinreal-time.
Overall,vibrationcontrolisacriticalaspectofmechanicalsystemdesignandoperation,andtherearediverseresearchopportunitiesforadvancingthefield.Theoptimization-basedPIDcontrolmethodpresentedinthispaperisavaluablecontributiontotheexistingbodyofknowledgeandcanserveasafoundationforfurtherinvestigationandcomparisonwithotherapproaches.Byleveragingthecomplementarystrengthsofmultiplecontrolmethodsandtechno
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年雞東縣幼兒園教師招教考試備考題庫附答案解析(奪冠)
- 2024年眉縣幼兒園教師招教考試備考題庫含答案解析(必刷)
- 2024年湘南幼兒師范高等專科學(xué)校馬克思主義基本原理概論期末考試題及答案解析(必刷)
- 2025年景縣招教考試備考題庫含答案解析(必刷)
- 2025年鄭州亞歐交通職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題及答案解析(奪冠)
- 2025年浙江音樂學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 2024年貴陽人文科技學(xué)院馬克思主義基本原理概論期末考試題附答案解析
- 2025年新鄉(xiāng)縣幼兒園教師招教考試備考題庫含答案解析(奪冠)
- 2024年璧山縣招教考試備考題庫含答案解析(奪冠)
- 2026年軟件工程師編程技能進階測試題庫
- QC080000-2017有害物質(zhì)管理體系程序文件
- 研學(xué)旅行概論課程培訓(xùn)課件
- 專業(yè)律師服務(wù)合同書樣本
- 反詐宣傳講座課件
- GB/T 6003.2-2024試驗篩技術(shù)要求和檢驗第2部分:金屬穿孔板試驗篩
- DB32T 4398-2022《建筑物掏土糾偏技術(shù)標(biāo)準(zhǔn)》
- (精確版)消防工程施工進度表
- 保險公司資產(chǎn)負債表、利潤表、現(xiàn)金流量表和所有者權(quán)益變動表格式
- 電磁流量說明書
- XX少兒棋院加盟協(xié)議
- 五年級數(shù)學(xué)應(yīng)用題專題訓(xùn)練50題
評論
0/150
提交評論