“說題活動”在例題教學中的作用_第1頁
“說題活動”在例題教學中的作用_第2頁
“說題活動”在例題教學中的作用_第3頁
“說題活動”在例題教學中的作用_第4頁
“說題活動”在例題教學中的作用_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第第頁“說題活動”在例題教學中的作用中圖分類號:G633.6文獻標識碼:C文章編號:1672-1578(2013)08-0108-02

學生數(shù)學能力的提高,重要的因素取決于學生思維活動的展開和學生求知活動的質(zhì)量,筆者就例題教學這一側(cè)面,如何滲透說題活動,進行了嘗試和實踐,以期盡可能地對提高學生的數(shù)學能力方面有所幫助,以下就談幾點做法和體會。

1說題活動的意義

思維素質(zhì)和心理素質(zhì)是素質(zhì)教育的重要內(nèi)涵,教會學生“數(shù)學的思維”始終是數(shù)學教學的主題。在例題教學中適當?shù)倪M行說題活動,能夠使學生在教學行為實施過程中,主動參與思考,在積極的探索中讓學生不僅僅學會寫數(shù)學、做數(shù)學,還要善于說數(shù)學,讓他們自覺的嘗試失敗和體驗成功,充分挖掘?qū)W生的潛能,增加師生的交流和對話,擴大解題教學的交互性,進一步給學生展示的空間和時間。事實上,我們不應該把學生看成題目的奴隸,而應當把題目看成載體,讓學生的知識水平、能力結(jié)構和學習習慣在解題過程中得到充分的生長、發(fā)展和延伸,讓學生學習能力得到健全和完善。

2說題活動的內(nèi)容

2.1師生共同審題

觀察是思維的入口,是解題的第一能力。師生共同審題,抓住問題的外部特征、內(nèi)部結(jié)構等方面透露的信息,進行分檢、組合和加工,尋找條件和結(jié)論的差異,必要時說出題目的背景和前景,為下一步的聯(lián)想做技術上的準備和鋪墊。

2.2說出解題之得意

一個好念頭往往正是解題思路的源泉。讓學生說出解題中得意之處,包括解題前、解題中、解題后的想法和片斷思路,讓學生盡顯才華,充分體驗成就感。這種念頭和想法不一定完善和成熟,甚至還可能錯誤,作為教師應該保護學生的這種創(chuàng)造性,鼓勵學生大膽創(chuàng)新,敢于求異,勇于探索。

2.3說出解題之困惑

讓學生說出解題之困惑,說出中斷思路、思路受阻的地方和原因,幫助學生分析解題中零星的想法和凌亂的思路,發(fā)現(xiàn)解題中的盲點,在困難中找出出路,尋找繞過障礙的道路,用適當?shù)姆椒◣椭_到要去而不能達到的目的的,這正是學生的需求和“急所”。通過分析,幫助他們調(diào)整思維策略和思維方向,延伸中斷思路,提高數(shù)學機智。

2.4說出解題后的反思

數(shù)學教育家波利亞曾談到:在你找到第一個蘑菇時,繼續(xù)觀察,就能發(fā)現(xiàn)一堆蘑菇。這條“蘑菇格言”在數(shù)學教學中可以給學生很大的啟發(fā)。在問題解決之后,結(jié)論是否一定正確,是否有更快捷、更完善的解法,能否進行延伸和拓展,有何啟示,這些全靠解題后的反思來解決。這正是學生完成自我意識、自我調(diào)整的過程。教師可根據(jù)情況,進行適當?shù)囊活}多解、一題多變、多題組合,注意數(shù)學思想和方法的總結(jié)、提煉和升華,進一步拓展學生的思維平臺,優(yōu)化解題過程。

下面以題為例說明:

例:解方程x2+x+1=

(1)說出解題之背景和前景。

本題以分式方程為載體,以一元二次方程的知識為工具,求未知數(shù)x的值。

(2)說出解題中之“困惑”。

若按常規(guī)方法去分母,則可能出現(xiàn)4次,而初中階段不涉及4次,因此產(chǎn)生思路中斷。

(3)說出解題之得意。

通過上述思路的追蹤,結(jié)合方程的結(jié)構,師生共同探索,可產(chǎn)生以下幾種解法:

解法1、方程兩邊都乘以x2+x,得(x2+x)(x2+x+1)=2

移相并分解因式,得:

(x2+x+2)(x2+x-1)=0

x2+x-1=0①

x2+x+2=0②

解方程①,得x=;方程②無實解。

經(jīng)檢驗,原方程的根是x=

解法2、設x2+x=y,則原方程變?yōu)閥+1=,即y2+y-2=0

解得y1=1,y2=-2

即x2+x=1或x2+x=-2,以下略。

解法3、原方程經(jīng)整理可變形為:

(x2+x)+=1+

或(x2+x)+=-2+

于是有x2+x=1或x2+x=-2,以下略。

解法4、原方程移項可變?yōu)?/p>

(x2+x)+=-1

而(x2+x)=-2

x2+x,是方程t2+t-2=0的兩個實根。

解得t1=1,t2=-2

x2+x=1或x2+x=-2,以下略。

解法5、設x2+x=t,令y=x2+x+1=,則有y=t+1y=

分別畫出這兩個函數(shù)的圖像,由圖像可知,當t=1或t=-2時,函數(shù)值相等。

(4)說解題后的反思。

反思1、要充分注意分式方程中含未知數(shù)的項的結(jié)構,要善于聯(lián)想,合理轉(zhuǎn)化。

反思2、解分式方程=-3

反思3、解方程+2=8x2-10

3說題活動的思考和說明

3.1說題形式可以多樣化

可以是座談式、提問式、分組討論式、個別輔導式,而且不同形式之間可以組合使用。

說題的時機要把握得當,可以是先說后做、邊做邊說,可以是解題前行為,也可以是解題中和解題后行為,知識各個時機的側(cè)重點不同,目標性不同。解題行為強調(diào)解題的切入點的選擇、解題前進方向的確定;解題中行為強化解題思路思路的選擇與調(diào)整;解題后行為側(cè)重于解題后的反思與啟示。

3.2題目的選擇

說題的題目的選擇應注意多角度、全方位,題目應典型、針對性強,特別是對題目的難度、深度、層次方面進行綜合考慮,既不忽視基礎題,也不回避較難題,注意應用性能力題目的滲透,開放題與封閉題的結(jié)合與補充。

3.3教師的活動與學生的活動

說題活動強調(diào)教學過程中的師生互動,在整個說題過程中,教師的活動應起著調(diào)控、總結(jié)、點撥、鑒定、評價與串聯(lián)作用,教師的關鍵在于觸及學生的思維空間和時間,幫助學生越過障礙,在最關鍵的地方扶持一把,但絕不能包辦代替。教師甚至可以把自己扮演成學生角色,置身困境,再突圍出來,讓學生看到高明思路的真正來源,從而使學生的思維的到實質(zhì)性的啟發(fā)。

3.4效果的思考

說題活動是例題教學的重要組成部分,好的說題活

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論