版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法錯誤的是()A.必然事件的概率為1B.數(shù)據(jù)1、2、2、3的平均數(shù)是2C.數(shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎2.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.843.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.84.某校40名學生參加科普知識競賽(競賽分數(shù)都是整數(shù)),競賽成績的頻數(shù)分布直方圖如圖所示,成績的中位數(shù)落在()A.50.5~60.5分 B.60.5~70.5分 C.70.5~80.5分 D.80.5~90.5分5.下列性質中菱形不一定具有的性質是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形6.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.7.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設繩索(粗細不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉了()A.60° B.90° C.120° D.45°8.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.9.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知圓錐的底面半徑為3cm,側面積為15πcm2,則這個圓錐的側面展開圖的圓心角°.12.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.13.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y=的圖象上,則k的值為________.14.一個正n邊形的中心角等于18°,那么n=_____.15.如果實數(shù)x、y滿足方程組,求代數(shù)式(+2)÷.16.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.17.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數(shù)一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).三、解答題(共7小題,滿分69分)18.(10分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)19.(5分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經(jīng)過點O的直線與邊AB相交于點E,與邊CD相交于點F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.20.(8分)下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數(shù)量關系,并說明理由.21.(10分)如圖,四邊形ABCD是平行四邊形,點E在BC上,點F在AD上,BE=DF,求證:AE=CF.22.(10分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數(shù)關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.23.(12分)某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設學校租用A型號客車x輛,租車總費用為y元.求y與x的函數(shù)解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最???最省的總費用是多少?24.(14分)深圳某書店為了迎接“讀書節(jié)”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節(jié)“活動計劃書書本類別科普類文學類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;科普類圖書不少于600本;…(1)已知科普類圖書的標價是文學類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數(shù)量恰好比單獨購買文學類圖書的數(shù)量少10本,請求出兩類圖書的標價;經(jīng)市場調査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對圖書銷售的影響,便調整了銷售方案,科普類圖書每本標價降低a(0<a<5)元銷售,文學類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:A.概率值反映了事件發(fā)生的機會的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項正確;B.數(shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數(shù);3.極差;4.隨機事件2、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.3、C【解析】
作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質、全等三角形的判定和性質、反比例函數(shù)的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.4、C【解析】分析:由頻數(shù)分布直方圖知這組數(shù)據(jù)共有40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內,據(jù)此可得.詳解:由頻數(shù)分布直方圖知,這組數(shù)據(jù)共有3+6+8+8+9+6=40個,則其中位數(shù)為第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在70.5~80.5分這一分組內,所以中位數(shù)落在70.5~80.5分.故選C.點睛:本題主要考查了頻數(shù)(率)分布直方圖和中位數(shù),解題的關鍵是掌握將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).5、C【解析】
根據(jù)菱形的性質:①菱形具有平行四邊形的一切性質;②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質6、D【解析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組7、B【解析】
由弧長的計算公式可得答案.【詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【點睛】本題主要考查圓弧長計算公式,牢記并運用公式是解題的關鍵.8、A【解析】
∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.9、C【解析】
根據(jù)二次函數(shù)的性質逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C10、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:根據(jù)圓錐的側面積公式S=πrl得出圓錐的母線長,再結合扇形面積即可求出圓心角的度數(shù).解:∵側面積為15πcm2,∴圓錐側面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.12、2【解析】分析:根據(jù)分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.13、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數(shù)上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對角線乘積的一半得:,解得14、20【解析】
由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點睛】本題考查的知識點是正多邊形和圓,解題的關鍵是熟練的掌握正多邊形和圓.15、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.16、1【解析】
由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內角互補可得∠1+∠3=180°,進而可得∠1的度數(shù).【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.17、205.1【解析】
A、先根據(jù)多邊形外角和為360°且各外角相等求得邊數(shù),再根據(jù)多邊形對角線條數(shù)的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據(jù)題意,此正多邊形的邊數(shù)為360°÷45°=8,則這個正多邊形對角線的條數(shù)一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數(shù),解題的關鍵是掌握多邊形的內角與外角、對角線計算公式及計算器的使用.三、解答題(共7小題,滿分69分)18、2.1.【解析】
據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據(jù)題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設x>0”,則此處應“x=±,舍負”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應用,坡面坡角問題和勾股定理,解題的關鍵是坡度等于坡角的正切值.19、(1)證明見解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】
(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;
(2)證明四邊形DEBF是矩形,由矩形的性質和等腰三角形的性質即可得出結論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)∵OE=OF,OB=OD,∴四邊形DEBF是平行四邊形,∵DE⊥AB,∴∠DEB=90°,∴四邊形DEBF是矩形,∴BD=EF,∴OD=OB=OE=OF=BD,∴腰長等于BD的所有的等腰三角形為△DOF,△FOB,△EOB,△DOE.【點睛】本題考查了等腰三角形的性質與平行四邊形的性質,解題的關鍵是熟練的掌握等腰三角形的性質與平行四邊形的性質.20、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】
(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結合點A的坐標即可求出點B的橫坐標,再利用二次函數(shù)圖象上點的坐標特征即可求出點B的坐標;(1)利用二次函數(shù)圖象上點的坐標特征可求出A、D的坐標,過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,根據(jù)點B、D的坐標利用待定系數(shù)法可求出直線BD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點N的坐標,利用兩點間的距離公式可求出BA、BD、BN的長度,由三者間的關系結合∠ABD=∠NBA,可證出△ABD∽△NBA,根據(jù)相似三角形的性質可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互補.【詳解】(1)當x=1時,y=ax2=1,解得:a=1;將(﹣1,7)、(0,2)代入y=x2+bx+c,得:,解得:,∴拋物線的表達式為y=x2﹣4x+2;(2)∵△ADM和△BDM同底,且△ADM與△BDM的面積比為2:1,∴點A到拋物線的距離與點B到拋物線的距離比為2:1.∵拋物線y=x2﹣4x+2的對稱軸為直線x=﹣=2,點A的橫坐標為0,∴點B到拋物線的距離為1,∴點B的橫坐標為1+2=5,∴點B的坐標為(5,7).(1)∠BAD和∠DCO互補,理由如下:當x=0時,y=x2﹣4x+2=2,∴點A的坐標為(0,2),∵y=x2﹣4x+2=(x﹣2)2﹣2,∴點D的坐標為(2,﹣2).過點A作AN∥x軸,交BD于點N,則∠AND=∠DCO,如圖所示.設直線BD的表達式為y=mx+n(m≠0),將B(5,7)、D(2,﹣2)代入y=mx+n,,解得:,∴直線BD的表達式為y=1x﹣2.當y=2時,有1x﹣2=2,解得:x=,∴點N的坐標為(,2).∵A(0,2),B(5,7),D(2,﹣2),∴AB=5,BD=1,BN=,∴==.又∵∠ABD=∠NBA,∴△ABD∽△NBA,∴∠ANB=∠DAB.∵∠ANB+∠AND=120°,∴∠DAB+∠DCO=120°,∴∠BAD和∠DCO互補.【點睛】本題是二次函數(shù)綜合題,考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、等底三角形面積的關系、二次函數(shù)的圖像與性質、相似三角形的判定與性質.熟練掌握待定系數(shù)法是解(1)的關鍵;熟練掌握等底三角形面積的關系式解(2)的關鍵;證明△ABD∽△NBA是解(1)的關鍵.21、見解析【解析】
根據(jù)平行四邊形性質得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF是平行四邊形,∴AE=CF.【點睛】本題考查了平行四邊形的性質和判定的應用,注意:平行四邊形的對邊平行且相等,有一組對邊平行且相等的四邊形是平行四邊形.22、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數(shù)關系式是解答本題的關鍵.23、(1)21≤x≤62且x為整數(shù);(2)共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】
(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關系式,再根據(jù)AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關于x的不等式,解不等式后再利用函數(shù)的性質即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數(shù);(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數(shù),∴共有25種租車方案,∵k=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 變壓器試驗工操作評估測試考核試卷含答案
- 高壓試驗工崗前決策判斷考核試卷含答案
- 膠印版材生產(chǎn)工崗前技術改進考核試卷含答案
- 脂肪醇胺化操作工發(fā)展趨勢競賽考核試卷含答案
- 棉花加工工崗前核心管理考核試卷含答案
- 玩具設計師崗前安全綜合考核試卷含答案
- 石作文物修復師創(chuàng)新思維能力考核試卷含答案
- 老年神經(jīng)外科手術麻醉風險評估工具
- 廣東省湛江市2026年普通高考測試語文試題附答案
- 企業(yè)客戶關系管理與滿意度調查制度
- 品牌設計報價方案
- 2024年地理信息技術與應用能力初級考試真題(一)(含答案解析)
- 初中英語必背3500詞匯(按字母順序+音標版)
- 《國家基層高血壓防治管理指南2025版》解讀 2
- 實施指南(2025)《HG-T 6214-2023 鄰氨基苯酚》
- 安全生產(chǎn)相關工作主要業(yè)績及研究成果
- 2025廣西百色能源投資發(fā)展集團有限公司招聘7人(第一批)筆試歷年參考題庫附帶答案詳解
- 地下礦山職工安全培訓課件
- 供熱安全培訓課件
- 供水管網(wǎng)搶修課件
- 培訓意識形態(tài)課件
評論
0/150
提交評論