第七章補充p 227 231及_第1頁
第七章補充p 227 231及_第2頁
第七章補充p 227 231及_第3頁
第七章補充p 227 231及_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

達性矩陣.

3

4

2 3

5

5

47

42

16

,

7

3

11

.

17

2

111

Example

3.10我們只關心矩陣里的元是否非零,所以可以進行矩陣的布爾運算.

1

2

1 1

2

2

23

21

0

1

1

1

11

11

11

13

,

3

23

1

解:B4=

A+A2+A3+A4

=

P=

0

1

0

0設圖G的鄰接矩陣為A

=

1

1

1

0

0

0

1 1

2

A2=

2

1

0 1

,

A3=

1

1

1

1 1

201001220110011,求可1

1

,2

0

1

0 0

0011

A4=

01

A

=

1

0

0

1

0 0

0

1

1

1

0

1

0

0計算可達性矩陣舉例

23

,

1

2

1 1

2

2

3

3

2 3

2

1

0 1

11

,

A4

=

2

1

0

1

2

1

2

2

1

2

0

0

1

1

2,0

1101110,

A1

01

A3

=

=

2

11

0 0

方法1:先由鄰接矩陣A求B4,B4=A+A2+A3+A4,然后寫出可達性矩陣P.42

1

,B

=

32

.1

1

3423

1111

5546

1P

=

111

7747

1111

11

0

1

0 0

0

0

1 1

1

1

0

1

1

1

1

10

1

1

0

1

1

1

11

0

1

1

1

1

1

10

0

1

0

0

1

1

0

01

11

11

11

,

1

1

1

1

1

1

1

10

00

01

111

1

1

1

1

1

1

11

11

11

.=

1

111計算可達性矩陣舉例方法2:將A,A2

,A3,A4轉換為布爾矩陣A

(1),A

(2)

,A

(3),A

(4)則,P=

A

(1)

∨A

(2)

A

(3)

A

(4),P=3

1r

+rr4

+r1fi計算可達性矩陣舉例方法3:用Warshall算法計算:逐列進行.在第i列中若有aji=1,則把第i行疊加到第j行.3

2r1

+r2r

+rr4

+r2

0

1

0 0

0

0

11

00

01

A

=

1

1

10

r

+rr2

+r3r4

+r31 3

fi=P.011010

0

1

0 0

0 1

11

10

fi

01

11

0

1

1

1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論