高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第20講 雙曲線高考6大常考基礎(chǔ)題型總結(jié)(含解析)_第1頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第20講 雙曲線高考6大??蓟A(chǔ)題型總結(jié)(含解析)_第2頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第20講 雙曲線高考6大??蓟A(chǔ)題型總結(jié)(含解析)_第3頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第20講 雙曲線高考6大??蓟A(chǔ)題型總結(jié)(含解析)_第4頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第20講 雙曲線高考6大常考基礎(chǔ)題型總結(jié)(含解析)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第20講雙曲線高考6大??蓟A(chǔ)題型總結(jié)【考點(diǎn)分析】考點(diǎn)二:雙曲線的通徑過雙曲線的焦點(diǎn)且與雙曲線實(shí)軸垂直的直線被雙曲線截得的線段,稱為雙曲線的通徑.通徑長為SKIPIF1<0.考點(diǎn)三:雙曲線??夹再|(zhì)結(jié)論①雙曲線的焦點(diǎn)到兩條漸近線的距離為常數(shù)SKIPIF1<0;頂點(diǎn)到兩條漸近線的距離為常數(shù)SKIPIF1<0;②雙曲線上的任意點(diǎn)SKIPIF1<0到雙曲線C的兩條漸近線的距離的乘積是一個(gè)常數(shù)SKIPIF1<0;考點(diǎn)四:雙曲線焦點(diǎn)三角形面積為SKIPIF1<0(可以這樣理解,頂點(diǎn)越高,張角越小,分母越小,面積越大)【題型目錄】題型一:利用雙曲線定義解題題型二:求雙曲線的標(biāo)準(zhǔn)方程題型三:雙曲線焦點(diǎn)三角形面積題型四:雙曲線的漸近線有關(guān)題型題型五:雙曲線的離心率問題題型六:雙曲線的最值問題【典型例題】題型一:利用雙曲線定義解題【例1】已知雙曲線SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,一條漸近線方程為SKIPIF1<0,若點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】A【分析】根據(jù)已知條件求出SKIPIF1<0的值,再利用雙曲線的定義可求得SKIPIF1<0.【詳解】解:雙曲線C的漸近線方程為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由雙曲線定義可知SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,又因?yàn)镾KIPIF1<0,故SKIPIF1<0,故選:A.【例2】已知SKIPIF1<0、SKIPIF1<0為雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,則SKIPIF1<0【答案】SKIPIF1<0【分析】利用雙曲線的定義及余弦定理求解得答案.【詳解】在雙曲線SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0【例3】已知雙曲線,點(diǎn)為其兩個(gè)焦點(diǎn),點(diǎn)為雙曲線上一點(diǎn),若,則的值為.【答案】【解析】由雙曲線的方程可知【例4】已知曲線SKIPIF1<0的方程為SKIPIF1<0,下列說法正確的是(

)A.若SKIPIF1<0,則曲線SKIPIF1<0為橢圓B.若SKIPIF1<0,則曲線SKIPIF1<0為雙曲線C.若曲線SKIPIF1<0為焦點(diǎn)在SKIPIF1<0軸的橢圓,則SKIPIF1<0D.若SKIPIF1<0為雙曲線,則漸近線方程為SKIPIF1<0【答案】BD【分析】根據(jù)橢圓及雙曲線的標(biāo)準(zhǔn)方程可判斷ABC,由雙曲線的性質(zhì)可判斷D.【詳解】對(duì)于A,當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,曲線SKIPIF1<0不為橢圓,故錯(cuò)誤;對(duì)于B,當(dāng)SKIPIF1<0時(shí),由雙曲線標(biāo)準(zhǔn)方程知,SKIPIF1<0是雙曲線,故正確;對(duì)于C,由SKIPIF1<0可得SKIPIF1<0,若表示焦點(diǎn)在SKIPIF1<0軸的橢圓,則SKIPIF1<0,即SKIPIF1<0,故錯(cuò)誤;對(duì)于D,若SKIPIF1<0為雙曲線,則由SKIPIF1<0可得SKIPIF1<0,即雙曲線的漸近線方程為SKIPIF1<0,故正確.故選:BD【題型專練】1.設(shè)雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線右支上的一點(diǎn),且SKIPIF1<0與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】B【分析】依題意作出曲線圖形,點(diǎn)P在雙曲線右支上,由雙曲線定義,可得|MN|﹣|MO|=SKIPIF1<0丨PF丨﹣3﹣SKIPIF1<0丨PF2丨=SKIPIF1<0(丨PF丨﹣丨PF2丨)﹣3=SKIPIF1<0×2a﹣3=1.【詳解】由題意可知:雙曲線SKIPIF1<0焦點(diǎn)在x軸上,a=4,b=3,c=5,設(shè)雙曲線的右焦點(diǎn)F2(5,0),左焦點(diǎn)F(﹣5,0),由OM為△PFF1中位線,則丨OM丨=SKIPIF1<0丨PF2丨,由PF與圓x2+y2=16相切于點(diǎn)N,則△ONF為直角三角形,∴丨NF丨2=丨OF丨2﹣丨ON丨2=25﹣16=9,則丨NF丨=3,∴丨MN丨=丨MF丨﹣丨NF丨=丨MF丨﹣3,由丨MF丨=SKIPIF1<0丨PF丨,∴|MN|﹣|MO|=SKIPIF1<0丨PF丨﹣3﹣SKIPIF1<0丨PF2丨=SKIPIF1<0(丨PF丨﹣丨PF2丨)﹣3=SKIPIF1<0×2a﹣3=1,∴|MN|﹣|MO|=1,故選:B.2.已知F1、F2分別為雙曲線C:SKIPIF1<0-SKIPIF1<0=1的左、右焦點(diǎn),點(diǎn)A為C上一點(diǎn),點(diǎn)M的坐標(biāo)為(2,0),AM為∠F1AF2的角平分線.則|AF2|=.【答案】SKIPIF1<0【分析】利用角平分線定理及雙曲線的定義求解得答案.【詳解】在雙曲線SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<03.方程SKIPIF1<0表示雙曲線的一個(gè)充分不必要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求得方程SKIPIF1<0表示雙曲線的充要條件,從而確定正確答案.【詳解】由于方程SKIPIF1<0表示雙曲線,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以在ABCD四個(gè)選項(xiàng)中,方程SKIPIF1<0表示雙曲線的一個(gè)充分不必要條件是SKIPIF1<0.故選:B、題型二:求雙曲線的標(biāo)準(zhǔn)方程【例1】與橢圓SKIPIF1<0共焦點(diǎn)且過點(diǎn)SKIPIF1<0的雙曲線的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】【分析】求出橢圓的焦點(diǎn)坐標(biāo),利用雙曲線的定義可求得SKIPIF1<0的值,再由SKIPIF1<0可求得SKIPIF1<0的值,結(jié)合雙曲線的焦點(diǎn)位置可求得雙曲線的標(biāo)準(zhǔn)方程.【詳解】橢圓SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,設(shè)雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0,由雙曲線的定義可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此,雙曲線的方程為SKIPIF1<0.故選:C.【例2】已知圓SKIPIF1<0,SKIPIF1<0為圓心,SKIPIF1<0為圓上任意一點(diǎn),定點(diǎn)SKIPIF1<0,線段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則當(dāng)點(diǎn)SKIPIF1<0在圓上運(yùn)動(dòng)時(shí),點(diǎn)SKIPIF1<0的軌跡方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用圓的性質(zhì),線段垂直平分線的性質(zhì),結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】解:因?yàn)榫€段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,所以有SKIPIF1<0,由圓SKIPIF1<0,得SKIPIF1<0,該圓的半徑SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在圓上運(yùn)動(dòng)時(shí),所以有SKIPIF1<0,于是有SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的雙曲線,所以SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.故選:B.【例3】已知雙曲線H:SKIPIF1<0(SKIPIF1<0),以原點(diǎn)為圓心,雙曲線的虛半軸長為半徑的圓與雙曲線的兩條漸近線相交于A、B、C、D四點(diǎn),四邊形SKIPIF1<0的面積為SKIPIF1<0,則雙曲線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)給定條件,求出雙曲線在第一三象限的漸近線傾斜角正切,再結(jié)合四邊形面積求解作答.【詳解】雙曲線H:SKIPIF1<0的漸近線方程為:SKIPIF1<0,令直線SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,由對(duì)稱性不妨令點(diǎn)SKIPIF1<0分別在第一、四象限,坐標(biāo)原點(diǎn)為O,則SKIPIF1<0,于是得SKIPIF1<0,而雙曲線的虛半軸長為3,即SKIPIF1<0,顯然四邊形SKIPIF1<0為矩形,其面積SKIPIF1<0,解得SKIPIF1<0所以雙曲線的方程為SKIPIF1<0.故選:B【例4】已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)M在雙曲線C的右支上,SKIPIF1<0,若SKIPIF1<0與C的一條漸近線l垂直,垂足為N,且SKIPIF1<0,其中O為坐標(biāo)原點(diǎn),則雙曲線C的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用中位線的性質(zhì)得到SKIPIF1<0,且SKIPIF1<0,根據(jù)SKIPIF1<0得到SKIPIF1<0,然后利用點(diǎn)到直線的距離公式得到SKIPIF1<0,最后再直角三角形SKIPIF1<0中利用勾股定理列方程得到SKIPIF1<0,即可得到雙曲線方程.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,直線l的方程為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,在直角三角形SKIPIF1<0中利用勾股定理得SKIPIF1<0,解得SKIPIF1<0,所以雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:C.【題型專練】1.已知雙曲線的對(duì)稱軸為坐標(biāo)軸,兩個(gè)頂點(diǎn)間的距離為2,焦點(diǎn)在SKIPIF1<0軸上,且焦點(diǎn)到漸近線的距離為SKIPIF1<0,則雙曲線的標(biāo)準(zhǔn)方程是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)雙曲線定點(diǎn)的定義,求得SKIPIF1<0,設(shè)出雙曲線方程,寫出漸近線方程,利用點(diǎn)到直線距離公式,建立方程,可得答案.【詳解】由題意得SKIPIF1<0,即SKIPIF1<0,設(shè)雙曲線的方程為SKIPIF1<0,焦點(diǎn)SKIPIF1<0到其漸近線SKIPIF1<0的距離為SKIPIF1<0,雙曲線方程為SKIPIF1<0,綜上,雙曲線的方程為SKIPIF1<0.故選:B.2.已知雙曲線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,滿足SKIPIF1<0,SKIPIF1<0,則雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可知SKIPIF1<0,求解即可【詳解】由題意可知雙曲線方程為SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,所以雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,故選:B3.已知圓SKIPIF1<0:SKIPIF1<0,SKIPIF1<0為圓心,SKIPIF1<0為圓上任意一點(diǎn),定點(diǎn)SKIPIF1<0,線段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則當(dāng)點(diǎn)SKIPIF1<0在圓上運(yùn)動(dòng)時(shí),點(diǎn)SKIPIF1<0的軌跡方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用圓的性質(zhì),線段垂直平分線的性質(zhì),結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】因?yàn)榫€段SKIPIF1<0的垂直平分線SKIPIF1<0與直線SKIPIF1<0相交于點(diǎn)SKIPIF1<0,所以有SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,該圓的半徑為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在圓上運(yùn)動(dòng)時(shí),所以有SKIPIF1<0,于是有SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的雙曲線,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0,故選:D4.已知雙曲線方程為SKIPIF1<0,焦距為6,則k的值為________.【答案】SKIPIF1<0【分析】由雙曲線焦距可得SKIPIF1<0,討論焦點(diǎn)在x軸、y軸上,結(jié)合SKIPIF1<0求k值即可.【詳解】由焦距為6,知:SKIPIF1<0,若焦點(diǎn)在x軸上,則方程可化為SKIPIF1<0,即SKIPIF1<0,解得k=6;若焦點(diǎn)在y軸上,則方程可化為SKIPIF1<0,即SKIPIF1<0,即k=-6.綜上所述,k值為6或-6.故答案為:±6.5.(2022·重慶·三模)已知雙曲線SKIPIF1<0:SKIPIF1<0的左右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,左右頂點(diǎn)為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線SKIPIF1<0交雙曲線C的右支于P,Q兩點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)直線SKIPIF1<0繞著SKIPIF1<0轉(zhuǎn)動(dòng)時(shí),下列量保持不變的是(

)A.SKIPIF1<0的周長 B.SKIPIF1<0的周長與SKIPIF1<0之差C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【解析】【分析】如圖所示:當(dāng)直線SKIPIF1<0的傾斜角越小時(shí),點(diǎn)SKIPIF1<0的周長越大,可判斷A,根據(jù)雙曲線定義求解可判斷B,設(shè)SKIPIF1<0,則SKIPIF1<0根據(jù)商與積的值可判斷CD.【詳解】如圖所示:當(dāng)直線SKIPIF1<0的傾斜角越小時(shí),點(diǎn)SKIPIF1<0的周長越大,故A不正確;SKIPIF1<0的周長為SKIPIF1<0所以SKIPIF1<0的周長與SKIPIF1<0之差為SKIPIF1<0,故B正確;設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0不是常量,故C不正確;由SKIPIF1<0為常量,故D正確;故選:BD題型三:雙曲線焦點(diǎn)三角形面積【例1】設(shè)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.SKIPIF1<0是SKIPIF1<0上一點(diǎn),且SKIPIF1<0.若△SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0()A.1 B.2 C.4 D.8【答案】A【思路導(dǎo)引】根據(jù)雙曲線的定義,三角形面積公式,勾股定理,結(jié)合離心率公式,即可得出答案.【解析】解法一:SKIPIF1<0,SKIPIF1<0,根據(jù)雙曲線的定義可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選A.解法二:由題意知,雙曲線的焦點(diǎn)三角形面積為SKIPIF1<0.∴SKIPIF1<0=4,則SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0.解法三:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求的SKIPIF1<0.【例2】已知SKIPIF1<0,SKIPIF1<0是雙曲線C:SKIPIF1<0的左、右焦點(diǎn),M,N是C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),且SKIPIF1<0,則四邊形SKIPIF1<0的面積是______.【答案】72【分析】判斷四邊形SKIPIF1<0為矩形,設(shè)SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,結(jié)合雙曲線定義可得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即可求得四邊形SKIPIF1<0的面積.【詳解】由SKIPIF1<0可知SKIPIF1<0,因?yàn)镸,N是C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),且SKIPIF1<0,所以四邊形SKIPIF1<0為矩形,設(shè)SKIPIF1<0,SKIPIF1<0,由雙曲線的定義可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0的面積SKIPIF1<0,故答案為:72【題型專練】1.已知SKIPIF1<0,SKIPIF1<0分別是雙曲線C:SKIPIF1<0的左、右焦點(diǎn),P是C上一點(diǎn),且位于第一象限,SKIPIF1<0,則(

)A.P的縱坐標(biāo)為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0的周長為SKIPIF1<0 D.SKIPIF1<0的面積為4【答案】ABD【分析】結(jié)合SKIPIF1<0、雙曲線的定義、三角形的面積和周長等知識(shí)進(jìn)行分析,從而確定正確答案.【詳解】依題意SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.由雙曲線的定義可得SKIPIF1<0①,兩邊平方得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的面積為SKIPIF1<0,D正確.設(shè)P的縱坐標(biāo)為h,SKIPIF1<0的面積SKIPIF1<0,解得SKIPIF1<0,A正確.SKIPIF1<0,解得SKIPIF1<0②,SKIPIF1<0的周長為SKIPIF1<0,C錯(cuò)誤.①+②可得SKIPIF1<0,B正確.故選:ABD2.設(shè)SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上且SKIPIF1<0,則△SKIPIF1<0的面積為()A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.2【答案】B【解析】由已知,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,[來源:Z.xx.k.Com]即SKIPIF1<0是以P為直角頂點(diǎn)的直角三角形,故SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故選B.題型四:雙曲線的漸近線有關(guān)題型焦點(diǎn)在SKIPIF1<0軸上的漸近線為SKIPIF1<0焦點(diǎn)在SKIPIF1<0軸上的漸近線為SKIPIF1<0若雙曲線的方程為SKIPIF1<0,要求漸近線只需令SKIPIF1<0,解出即可即已知雙曲線方程,將雙曲線方程中的“常數(shù)”換成“0”,然后因式分解即得漸近線方程?!纠?】雙曲線SKIPIF1<0與SKIPIF1<0有相同的(

)A.離心率 B.漸近線 C.實(shí)軸長 D.焦點(diǎn)【答案】D【分析】根據(jù)雙曲線方程判斷焦點(diǎn)在SKIPIF1<0軸上,并求SKIPIF1<0,進(jìn)而確定離心率SKIPIF1<0、漸近線SKIPIF1<0、實(shí)軸長SKIPIF1<0和焦點(diǎn)SKIPIF1<0.【詳解】對(duì)于雙曲線SKIPIF1<0可得:焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0則離心率SKIPIF1<0,漸近線SKIPIF1<0,實(shí)軸長SKIPIF1<0,焦點(diǎn)SKIPIF1<0對(duì)于雙曲線SKIPIF1<0可得:焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0則離心率SKIPIF1<0,漸近線SKIPIF1<0,實(shí)軸長SKIPIF1<0,焦點(diǎn)SKIPIF1<0∴ABC錯(cuò)誤,D正確故選:D.【例2】雙曲線SKIPIF1<0的離心率為SKIPIF1<0,則其漸近線方程為()A.SKIPIF1<0B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】試題分析:根據(jù)離心率得SKIPIF1<0關(guān)系,進(jìn)而得SKIPIF1<0關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.試題解析:SKIPIF1<0.∵漸近線方程為SKIPIF1<0漸近線方程為SKIPIF1<0,故選A.【名師點(diǎn)睛】已知雙曲線方程SKIPIF1<0求漸近線方程:SKIPIF1<0.【考點(diǎn)】雙曲線的簡(jiǎn)單幾何性質(zhì)(離心率、漸近線方程)【例3】設(shè)雙曲線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,且與SKIPIF1<0具有相同漸近線,則SKIPIF1<0的方程為________;漸近線方程為________.【答案】SKIPIF1<0SKIPIF1<0【解析】設(shè)與SKIPIF1<0具有相同漸近線的雙曲線C的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入C的方程中,得SKIPIF1<0.∴雙曲線的方程為SKIPIF1<0,漸近線方程為SKIPIF1<0.【例4】已知雙曲線SKIPIF1<0的離心率為2,過右焦點(diǎn)且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn).設(shè)A,B到雙曲線同一條漸近線的距離分別為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,則雙曲線的方程為 ()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)雙曲線的右焦點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,不妨設(shè):SKIPIF1<0,雙曲線的一條漸近線方程為:SKIPIF1<0,據(jù)此可得:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,雙曲線的離心率:SKIPIF1<0,據(jù)此可得:SKIPIF1<0,則雙曲線的方程為SKIPIF1<0,故選C.【例5】設(shè)雙曲線SKIPIF1<0SKIPIF1<0SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩點(diǎn)在雙曲線SKIPIF1<0上且關(guān)于原點(diǎn)對(duì)稱,若SKIPIF1<0,SKIPIF1<0,則該雙曲線的漸近線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)雙曲線左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線右支,根據(jù)對(duì)稱性知四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,根據(jù)雙曲線的定義可推得,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,可知四邊形為矩形,根據(jù)勾股定理得到SKIPIF1<0的關(guān)系式,進(jìn)而得到SKIPIF1<0的關(guān)系式,即可求出漸近線方程.【詳解】設(shè)雙曲線左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線右支,根據(jù)對(duì)稱性知四邊形SKIPIF1<0是平行四邊形.由已知可得SKIPIF1<0,又由雙曲線的定義知,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,所以四邊形SKIPIF1<0是矩形,所以SKIPIF1<0.在SKIPIF1<0中,有SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.所以,雙曲線的漸近線方程為SKIPIF1<0,整理可得SKIPIF1<0.故選:A.【題型專練】1.(2022·全國·高考真題(理))若雙曲線SKIPIF1<0的漸近線與圓SKIPIF1<0相切,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】首先求出雙曲線的漸近線方程,再將圓的方程化為標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,依題意圓心到直線的距離等于圓的半徑,即可得到方程,解得即可.【詳解】解:雙曲線SKIPIF1<0的漸近線為SKIPIF1<0,即SKIPIF1<0,不妨取SKIPIF1<0,圓SKIPIF1<0,即SKIPIF1<0,所以圓心為SKIPIF1<0,半徑SKIPIF1<0,依題意圓心SKIPIF1<0到漸近線SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).故答案為:SKIPIF1<0.2.已知雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,則SKIPIF1<0的離心率SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可得SKIPIF1<0,再由SKIPIF1<0可求出答案.【詳解】由雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:B.3.設(shè)SKIPIF1<0是雙曲線SKIPIF1<0的左,右焦點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn).過SKIPIF1<0作SKIPIF1<0的一條漸近線的垂線,垂足為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的離心率為 ()A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】試題分析:由雙曲線性質(zhì)得到SKIPIF1<0,SKIPIF1<0,然后在SKIPIF1<0和在SKIPIF1<0中利用余弦定理可得.試題解析:由題可知SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選C.4.已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線的漸近線上,SKIPIF1<0是邊長為2的等邊三角形(SKIPIF1<0為原點(diǎn)),則雙曲線的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由題意可得SKIPIF1<0,解得SKIPIF1<0,故雙曲線方程為SKIPIF1<0,故選D.5.已知雙曲線過點(diǎn),且漸近線方程為,則該雙曲線的標(biāo)準(zhǔn)方程為.【答案】SKIPIF1<0【解析】∵雙曲線的漸近線方程為,故可設(shè)雙曲線的方程為SKIPIF1<0,又雙曲線過點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,故雙曲線的方程為SKIPIF1<0.題型五:雙曲線的離心率問題【例1】已知橢圓SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)具有相同焦點(diǎn)SKIPIF1<0、SKIPIF1<0,SKIPIF1<0是它們的一個(gè)交點(diǎn),則SKIPIF1<0,記橢圓去雙曲線的離心率分別為SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的最小值是(

)A.2 B.3 C.4 D.5【答案】B【分析】由橢圓和雙曲線的定義以及余弦定理解得SKIPIF1<0,再由“1”的代換和基本不等式求得結(jié)果.【詳解】設(shè)P為第一象限的交點(diǎn),SKIPIF1<0則由橢圓和雙曲線的定義可知,SKIPIF1<0∴在△SKIPIF1<0中由余弦定理得:SKIPIF1<0即:SKIPIF1<0∴SKIPIF1<0,即:SKIPIF1<0∴SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取得最小值為3.故選:B.【例2】雙曲線SKIPIF1<0與拋物線SKIPIF1<0有共同的焦點(diǎn)SKIPIF1<0,雙曲線左焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線右支一點(diǎn),過SKIPIF1<0向SKIPIF1<0的角平分線作垂線,垂足為SKIPIF1<0,則雙曲線的離心率是(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由拋物線的方程得焦點(diǎn)SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0,由角平分線的性質(zhì)得SKIPIF1<0且SKIPIF1<0,由中位線的性質(zhì)得SKIPIF1<0,根據(jù)雙曲線的定義求得SKIPIF1<0,由雙曲線的離心率公式即可得到答案.【詳解】由拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,故SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0的延長線于點(diǎn)SKIPIF1<0SKIPIF1<0是SKIPIF1<0的角平分線,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0由雙曲線的定義得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0故雙曲線的離心率為SKIPIF1<0故選:A.【例3】已知SKIPIF1<0,SKIPIF1<0分別是雙曲線C:SKIPIF1<0)的左、右焦點(diǎn),過SKIPIF1<0的直線與雙曲線C的右支相交于P、Q兩點(diǎn),且PQ⊥SKIPIF1<0.若SKIPIF1<0,則雙曲線C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由雙曲線的定義可得:SKIPIF1<0,SKIPIF1<0,于是可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,即可求得離心率的值.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,由雙曲線的定義可得:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,所以雙曲線的離心率SKIPIF1<0.故選:B.【例4】已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0作一條漸近線的垂線,垂足為SKIPIF1<0,若SKIPIF1<0的重心SKIPIF1<0在雙曲線上,則雙曲線的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】依次求出點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo),然后由點(diǎn)SKIPIF1<0在雙曲線上可建立方程求解.【詳解】不妨設(shè)SKIPIF1<0在SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在雙曲線上,所以SKIPIF1<0,解得SKIPIF1<0,故選:B.【例5】設(shè)SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以SKIPIF1<0為直徑的圓交雙曲線的某條漸近線于M,N兩點(diǎn),且SKIPIF1<0,(如圖),則該雙曲線的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先求出M,N兩點(diǎn)的坐標(biāo),再利用余弦定理,求出a,c之間的關(guān)系,即可得了雙曲線的離心率.【詳解】解:不妨設(shè)圓與SKIPIF1<0相交,且點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以由余弦定理得:SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A【題型專練】1.過雙曲線SKIPIF1<0內(nèi)一點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線交雙曲線于SKIPIF1<0兩點(diǎn),弦SKIPIF1<0恰好被SKIPIF1<0平分,則雙曲線SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0兩點(diǎn)的坐標(biāo)代入雙曲線方程相減,再結(jié)合SKIPIF1<0的關(guān)系,可得SKIPIF1<0,從而可得SKIPIF1<0,從而可得答案.【詳解】解:由題意可得SKIPIF1<0,且SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.2.已知雙曲線SKIPIF1<0,左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,O為坐標(biāo)原點(diǎn),P為右支上一點(diǎn),且SKIPIF1<0,O到直線SKIPIF1<0的距離為b,則雙曲線C的離心率為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用已知條件及圖像用兩種方式求出SKIPIF1<0,建立關(guān)于SKIPIF1<0的等式,結(jié)合SKIPIF1<0及雙曲線離心率SKIPIF1<0,化簡(jiǎn)方程,解出即可.【詳解】如圖所示:由SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為右支上一點(diǎn),且SKIPIF1<0,在雙曲線中:SKIPIF1<0,所以SKIPIF1<0,由三角形的性質(zhì)有:SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0到直線SKIPIF1<0的距離為b,且SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0為SKIPIF1<0的中位線,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,在SKIPIF1<0中,所以SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,由雙曲線的定義有:SKIPIF1<0,①SKIPIF1<0,②聯(lián)立①②解得:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:B.3.已知雙曲線SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,過SKIPIF1<0的直線與曲線SKIPIF1<0的左右兩支分別交于點(diǎn)SKIPIF1<0,且SKIPIF1<0,則曲線C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0,進(jìn)而結(jié)合雙曲線的定義得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,進(jìn)而在SKIPIF1<0,SKIPIF1<0結(jié)合余弦定理求得SKIPIF1<0,進(jìn)而得SKIPIF1<0,再求離心率即可.【詳解】解:如圖,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由雙曲線的定義得:SKIPIF1<0,SKIPIF1<0所以,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0故選:B4.若雙曲線SKIPIF1<0的一條漸近線被圓SKIPIF1<0所截得的弦長為SKIPIF1<0,則C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【答案】C【分析】通過圓的圓心與雙曲線的漸近線的距離,列出關(guān)系式,然后求解雙曲線的離心率即可.【詳解】解:雙曲線SKIPIF1<0的一條漸近線不妨為:SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0,半徑為:2,雙曲線SKIPIF1<0的一條漸近線被圓SKIPIF1<0所截得的弦長為2SKIPIF1<0,可得圓心到直線的距離為:SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故選:C.5.已知SKIPIF1<0分別為雙曲線SKIPIF1<0的左?右焦點(diǎn),過SKIPIF1<0的直線與雙曲線交左支交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓經(jīng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論