版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第九年級數(shù)學(xué)的課件簡短5篇九年級數(shù)學(xué)的課件簡短5篇
九年級數(shù)學(xué)的課件怎么寫。教案是教師為順利而有效地開展教學(xué)活動,根據(jù)課程標(biāo)準,教學(xué)大綱和教科書要求及學(xué)生的實際情況,進行的具體設(shè)計和安排的一種實用性教學(xué)文書。下面小編給大家?guī)黻P(guān)于九年級數(shù)學(xué)的課件簡短,希望會對大家的工作與學(xué)習(xí)有所幫助。
九年級數(shù)學(xué)的課件簡短【篇1】
1.了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點的概念及其應(yīng)用它們解決一些實際問題.
2.通過復(fù)移、軸對稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實際問題.
3.旋轉(zhuǎn)的基本性質(zhì).
重點
旋轉(zhuǎn)及對應(yīng)點的有關(guān)概念及其應(yīng)用.
難點
旋轉(zhuǎn)的基本性質(zhì).
一、復(fù)習(xí)引入
(學(xué)生活動)請同學(xué)們完成下面各題.
1.將如圖所示的四邊形ABCD平移,使點B的對應(yīng)點為點D,作出平移后的圖形.
2.如圖,已知△ABC和直線l,請你畫出△ABC關(guān)于l的對稱圖形△A′B′C′.
3.圓是軸對稱圖形嗎等腰三角形呢你還能指出其它的嗎
(口述)老師點評并總結(jié):
(1)平移的有關(guān)概念及性質(zhì).
(2)如何畫一個圖形關(guān)于一條直線(對稱軸)的對稱圖形并口述它具有的一些性質(zhì).
(3)什么叫軸對稱圖形
二、探索新知
我們前面已經(jīng)復(fù)移等有關(guān)內(nèi)容,生活中是否還有其它運動變化呢回答是肯定的,下面我們就來研究.
1.請同學(xué)們看講臺上的大時鐘,有什么在不停地轉(zhuǎn)動旋轉(zhuǎn)圍繞什么點呢從現(xiàn)在到下課時針轉(zhuǎn)了多少度分針轉(zhuǎn)了多少度秒針轉(zhuǎn)了多少度
(口答)老師點評:時針、分針、秒針在不停地轉(zhuǎn)動,它們都繞時鐘的中心.從現(xiàn)在到下課時針轉(zhuǎn)了________度,分針轉(zhuǎn)了________度,秒針轉(zhuǎn)了________度.
2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動.如何轉(zhuǎn)到新的位置(老師點評略)
3.第1,2兩題有什么共同特點呢
共同特點是如果我們把時鐘、風(fēng)車風(fēng)輪當(dāng)成一個圖形,那么這些圖形都可以繞著某一固定點轉(zhuǎn)動一定的角度.
像這樣,把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.
如果圖形上的點P經(jīng)過旋轉(zhuǎn)變?yōu)辄cP′,那么這兩個點叫做這個旋轉(zhuǎn)的對應(yīng)點.
下面我們來運用這些概念來解決一些問題.
例1如圖,如果把鐘表的指針看做三角形OAB,它繞O點按順時針方向旋轉(zhuǎn)得到△OEF,在這個旋轉(zhuǎn)過程中:
(1)旋轉(zhuǎn)中心是什么旋轉(zhuǎn)角是什么
(2)經(jīng)過旋轉(zhuǎn),點A,B分別移動到什么位置
解:(1)旋轉(zhuǎn)中心是O,∠AOE,∠BOF等都是旋轉(zhuǎn)角.
(2)經(jīng)過旋轉(zhuǎn),點A和點B分別移動到點E和點F的位置.
自主探究:
請看我手里拿著的硬紙板,我在硬紙板上挖下一個三角形的洞,再挖一個點O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個挖掉的三角形圖案(△ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動硬紙板,在黑板上再描出這個挖掉的三角形(△A′B′C′),移去硬紙板.
(分組討論)根據(jù)圖回答下面問題(一組推薦一人上臺說明)
1.線段OA與OA′,OB與OB′,OC與OC′有什么關(guān)系
2.∠AOA′,∠BOB′,∠COC′有什么關(guān)系
3.△ABC與△A′B′C′的形狀和大小有什么關(guān)系
老師點評:1.OA=OA′,OB=OB′,OC=OC′,也就是對應(yīng)點到旋轉(zhuǎn)中心的距離相等.
2.∠AOA′=∠BOB′=∠COC′,我們把這三個相等的角,即對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角.
3.△ABC和△A′B′C′形狀相同和大小相等,即全等.
綜合以上的實驗操作得出:
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等.
例2如圖,△ABC繞C點旋轉(zhuǎn)后,頂點A的對應(yīng)點為點D,試確定頂點B的對應(yīng)點的位置,以及旋轉(zhuǎn)后的三角形.
分析:繞C點旋轉(zhuǎn),A點的對應(yīng)點是D點,那么旋轉(zhuǎn)角就是∠ACD,根據(jù)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即∠BCB′=∠ACD,又由對應(yīng)點到旋轉(zhuǎn)中心的距離相等,即CB=CB′,就可確定B′的位置,如圖所示.
解:(1)連接CD;
(2)以CB為一邊作∠BCE,使得∠BCE=∠ACD;
(3)在射線CE上截取CB′=CB,則B′即為所求的B的對應(yīng)點;
(4)連接DB′,則△DB′C就是△ABC繞C點旋轉(zhuǎn)后的圖形.
三、課堂小結(jié)
(學(xué)生總結(jié),老師點評)
本節(jié)課應(yīng)掌握:
1.對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
2.對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
3.旋轉(zhuǎn)前、后的圖形全等及其它們的應(yīng)用.
四、作業(yè)布置
教材第62~63頁習(xí)題4,5,6.
九年級數(shù)學(xué)的課件簡短【篇2】
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學(xué)來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。
教學(xué)重點和難點:
運用數(shù)形結(jié)合的思想方法進行解二次函數(shù),這是重點也是難點。
教學(xué)過程:
(一)引入:
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個方面進行討論:
(1)如何畫圖
(2)頂點、圖象與坐標(biāo)軸的交點
(3)所形成的三角形以及四邊形的面積
(4)對稱軸
從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE=SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標(biāo)是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項目設(shè)計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學(xué)校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
(四)讓學(xué)生討論小結(jié)
(五)作業(yè)布置
1、在直角坐標(biāo)平面內(nèi),點O為坐標(biāo)原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設(shè)平移后的圖象與y軸的交點為C,頂點為P,求POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y=x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標(biāo)系,如圖2。
(1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域。
(2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(計算結(jié)果精確到1米)。
九年級數(shù)學(xué)的課件簡短【篇3】
一學(xué)期的工作結(jié)束了,可以說緊張忙碌卻收獲多多?;仡欉@學(xué)期的工作,我教九(4)班的數(shù)學(xué),我總是在不斷地摸索和學(xué)習(xí)中進行教學(xué),工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結(jié)經(jīng)驗,吸取教訓(xùn),使以后的工作能夠有效、有序地進行,現(xiàn)將教學(xué)所得總結(jié)如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。
二、在教學(xué)過程方面
在課堂教學(xué)中我一直注重學(xué)生的參與。讓學(xué)生參與到課堂教學(xué)中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學(xué)習(xí)任何知識的途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系?!敝挥谐浞职l(fā)揮學(xué)生的主體作用,讓學(xué)生人人參與,才能限度地促進學(xué)生的發(fā)展。但還是難免受傳統(tǒng)教學(xué)觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當(dāng)趟課的教學(xué)任務(wù)。后來在學(xué)?!啊钡慕虒W(xué)模式下,才開始進一步嘗試,并在不斷的嘗試中總結(jié)經(jīng)驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學(xué)生學(xué)習(xí),對學(xué)生的引導(dǎo)、啟發(fā)不足。
3)、新課標(biāo)下新的教學(xué)思想學(xué)習(xí)不深入。對學(xué)生的自主學(xué)習(xí),合作學(xué)習(xí),缺乏理論指導(dǎo)
4)、差生末抓在手。由于對學(xué)生的了解不夠,對學(xué)生的學(xué)習(xí)態(tài)度、思維能力不太清楚。上課和復(fù)習(xí)時該講的都講了,學(xué)生掌握的情況怎樣,教師心中無數(shù)。導(dǎo)致了教學(xué)中的盲目性。
四、今后努力的方向
1)、加強學(xué)習(xí),學(xué)習(xí)新教學(xué)模式下新的教學(xué)思想。
2)、熟讀初一到初三的數(shù)學(xué)教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學(xué)習(xí)老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。
4)、加強轉(zhuǎn)差培優(yōu)力度。
5)、加強教學(xué)反思,加大教學(xué)投入。
一學(xué)期的教學(xué)工作即將結(jié)束,這半年的教學(xué)工作很苦,很累,但在不斷的摸索中,自己學(xué)到了很多東西。今后我會更加努力提高自己的業(yè)務(wù)水平。
九年級數(shù)學(xué)的課件簡短【篇4】
一、教學(xué)目標(biāo)
1、了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2、初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3、通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
二、重難點
(一)教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
(二)重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的.辨證思想。
四、教法建議
1、對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。
2、在教學(xué)過程中,應(yīng)使學(xué)生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3、在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學(xué)生分析問題、解決問題的能力。
五、教學(xué)目標(biāo)
(一)知識教學(xué)點
1、使學(xué)生能利用公式解決簡單的實際問題。
2、使學(xué)生理解公式與代數(shù)式的關(guān)系。
(二)能力訓(xùn)練點
1、利用數(shù)學(xué)公式解決實際問題的能力。
2、利用已知的公式推導(dǎo)新公式的能力。
(三)德育滲透點
數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐。
(四)美育滲透點
數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美。
六、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏。
在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題。
板書:公式
師:小學(xué)里學(xué)過哪些面積公式?
板書:S=ah
(出示投影1)。解釋三角形,梯形面積公式。
九年級數(shù)學(xué)的課件簡短【篇5】
一、教學(xué)目標(biāo)
(一)知識與技能
了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。
(二)過程與方法
通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。
(三)情感、態(tài)度與價值觀
在數(shù)與形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 患者心理護理中的倫理問題
- 白癜風(fēng)患者的家庭護理和家庭照顧
- 大豐市小海中學(xué)高二生物三同步課程講義第講生態(tài)系統(tǒng)的穩(wěn)定性
- 2025年辦公用品快遞配送包裝合同協(xié)議
- 多模態(tài)數(shù)據(jù)驅(qū)動的健康診斷技術(shù)
- 第13課 西歐經(jīng)濟和社會的發(fā)展
- 2025年智能書法助手:教育政策適應(yīng)性
- 基于大數(shù)據(jù)的心理健康風(fēng)險預(yù)警系統(tǒng)
- 城市音樂空間與聽覺體驗研究
- 2026 年中職康復(fù)治療技術(shù)(按摩推拿)試題及答案
- 2026年遼寧生態(tài)工程職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫必考題
- 2026屆高考化學(xué)沖刺復(fù)習(xí)水溶液中離子平衡
- 2025年產(chǎn)業(yè)融合發(fā)展與區(qū)域經(jīng)濟一體化進程研究可行性研究報告
- 《國家賠償法》期末終結(jié)性考試(占總成績50%)-國開(ZJ)-參考資料
- 新教科版四上科學(xué)2.2《呼吸與健康生活》優(yōu)質(zhì)課件
- 數(shù)字化智慧病理科建設(shè)白皮書
- 七人學(xué)生小品《如此課堂》劇本臺詞手稿
- 綠盾加密軟件技術(shù)白皮書
- GB/T 7600-2014運行中變壓器油和汽輪機油水分含量測定法(庫侖法)
- 比較文學(xué)概論馬工程課件 第5章
- 跨境人民幣業(yè)務(wù)介紹-楊吉聰
評論
0/150
提交評論