版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheTimeValueofMoneyWhatisTimeValue?WesaythatmoneyhasatimevaluebecausethatmoneycanbeinvestedwiththeexpectationofearningapositiverateofreturnInotherwords,“adollarreceivedtodayisworthmorethanadollartobereceivedtomorrow”Thatisbecausetoday’sdollarcanbeinvestedsothatwehavemorethanonedollartomorrowTheTerminologyofTimeValuePresentValue-Anamountofmoneytoday,orthecurrentvalueofafuturecashflowFutureValue-AnamountofmoneyatsomefuturetimeperiodPeriod-Alengthoftime(oftenayear,butcanbeamonth,week,day,hour,etc.)InterestRate-Thecompensationpaidtoalender(orsaver)fortheuseoffundsexpressedasapercentageforaperiod(normallyexpressedasanannualrate)AbbreviationsPV-PresentvalueFV-FuturevaluePmt-PerperiodpaymentamountN-Eitherthetotalnumberofcashflowsor thenumberofaspecificperiodi-TheinterestrateperperiodTimelines012345PVFVTodayAtimelineisagraphicaldeviceusedtoclarifythetimingofthecashflowsforaninvestmentEachtickrepresentsonetimeperiodCalculatingtheFutureValueSupposethatyouhaveanextra$100todaythatyouwishtoinvestforoneyear.Ifyoucanearn10%peryearonyourinvestment,howmuchwillyouhaveinoneyear?012345-100?CalculatingtheFutureValue(cont.)Supposethatattheendofyear1youdecidetoextendtheinvestmentforasecondyear.Howmuchwillyouhaveaccumulatedattheendofyear2?012345-110?GeneralizingtheFutureValueRecognizingthepatternthatisdeveloping,wecangeneralizethefuturevaluecalculationsasfollows:Ifyouextendedtheinvestmentforathirdyear,youwouldhave:CompoundInterestNotefromtheexamplethatthefuturevalueisincreasingatanincreasingrateInotherwords,theamountofinterestearnedeachyearisincreasingYear1:$10Year2:$11Year3:$12.10ThereasonfortheincreaseisthateachyearyouareearninginterestontheinterestthatwasearnedinpreviousyearsinadditiontotheinterestontheoriginalprincipleamountCompoundInterestGraphicallyTheMagicofCompoundingOnNov.25,1626PeterMinuit,aDutchman,reportedlypurchasedManhattanfromtheIndiansfor$24worthofbeadsandothertrinkets(珠子和其他飾品).WasthisagooddealfortheIndians?Thishappenedabout371yearsago,soiftheycouldearn5%peryeartheywouldnow(in1997)have:Iftheycouldhaveearned10%peryear,theywouldnowhave:That’sabout54,563Trillion(萬億)dollars!TheMagicofCompounding(cont.)TheWallStreetJournal(17Jan.92)saysthatallofNewYorkcityrealestateisworthabout$324billion.Ofthisamount,Manhattanisabout30%,whichis$97.2billionAt10%,thisis$54,562trillion!OurU.S.GNPisonlyaround$6trillionperyear.Sothisamountrepresentsabout9,094yearsworthofthetotaleconomicoutputoftheUSA!.CalculatingthePresentValueSofar,wehaveseenhowtocalculatethefuturevalueofaninvestmentButwecanturnthisaroundtofindtheamountthatneedstobeinvestedtoachievesomedesiredfuturevalue:PresentValue:AnExampleSupposethatyourfive-yearolddaughterhasjustannouncedherdesiretoattendcollege.Aftersomeresearch,youdeterminethatyouwillneedabout$100,000onher18thbirthdaytopayforfouryearsofcollege.Ifyoucanearn8%peryearonyourinvestments,howmuchdoyouneedtoinvesttodaytoachieveyourgoal?AnnuitiesAnannuityisaseriesofnominallyequalpaymentsequallyspacedintime(等時(shí)間間隔)Annuitiesareverycommon:RentMortgagepaymentsCarpaymentPensionincomeThetimelineshowsanexampleofa5-year,$100annuity012345100100100100100ThePrincipleofValueAdditivityHowdowefindthevalue(PVorFV)ofanannuity?First,youmustunderstandtheprincipleofvalueadditivity:ThevalueofanystreamofcashflowsisequaltothesumofthevaluesofthecomponentsInotherwords,ifwecanmovethecashflowstothesametimeperiodwecansimplyaddthemalltogethertogetthetotalvalue價(jià)值相加PresentValueofanAnnuityWecanusetheprincipleofvalueadditivitytofindthepresentvalueofanannuity,bysimplysummingthepresentvaluesofeachofthecomponents:PresentValueofanAnnuity(cont.)Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthepresentvalueis:01234510010010010010062.0968.3075.1382.6490.91379.08PresentValueofanAnnuity(cont.)Actually,thereisnoneedtotakethepresentvalueofeachcashflowseparatelyWecanuseaclosed-formofthePVAequationinstead:PresentValueofanAnnuity(cont.)Wecanusethisequationtofindthepresentvalueofourexampleannuityasfollows:Thisequationworksforallregularannuities,regardlessofthenumberofpaymentsTheFutureValueofanAnnuityWecanalsousetheprincipleofvalueadditivitytofindthefuturevalueofanannuity,bysimplysummingthefuturevaluesofeachofthecomponents:TheFutureValueofanAnnuity(cont.)Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthefuturevalueis:100100100100100012345146.41133.10121.00110.00}=610.51atyear5TheFutureValueofanAnnuity(cont.)JustaswedidforthePVAequation,wecouldinsteaduseaclosed-formoftheFVAequation:Thisequationworksforallregularannuities,regardlessofthenumberofpaymentsTheFutureValueofanAnnuity(cont.)Wecanusethisequationtofindthefuturevalueoftheexampleannuity:AnnuitiesDue
預(yù)付年金Thusfar,theannuitiesthatwehavelookedatbegintheirpaymentsattheendofperiod1;thesearereferredtoasregularannuitiesAannuitydueisthesameasaregularannuity,exceptthatitscashflowsoccuratthebeginningoftheperiodratherthanattheend0123451001001001001001001001001001005-periodAnnuityDue5-periodRegularAnnuityPresentValueofanAnnuityDueWecanfindthepresentvalueofanannuitydueinthesamewayaswedidforaregularannuity,withoneexceptionNotefromthetimelinethat,ifweignorethefirstcashflow,theannuityduelooksjustlikeafour-periodregularannuityTherefore,wecanvalueanannuityduewith:PresentValueofanAnnuityDue(cont.)Therefore,thepresentvalueofourexampleannuitydueis:NotethatthisishigherthanthePVofthe,otherwiseequivalent,regularannuityFutureValueofanAnnuityDueTocalculatetheFVofanannuitydue,wecantreatitasregularannuity,andthentakeitonemoreperiodforward:012345PmtPmtPmtPmtPmtFutureValueofanAnnuityDue(cont.)Thefuturevalueofourexampleannuityis:Notethatthisishigherthanthefuturevalueofthe,otherwiseequivalent,regularannuityDeferredAnnuities
遞延年金Adeferredannuityisthesameasanyotherannuity,exceptthatitspaymentsdonotbeginuntilsomelaterperiodThetimelineshowsafive-perioddeferredannuity01234510010010010010067PVofaDeferredAnnuityWecanfindthepresentvalueofadeferredannuityinthesamewayasanyotherannuity,withanextrasteprequiredBeforewecandothishowever,thereisanimportantruletounderstand: WhenusingthePVAequation,theresultingPVisalwaysoneperiodbeforethefirstpaymentoccursPVofaDeferredAnnuity(cont.)TofindthePVofadeferredannuity,wefirstfindusethePVAequation,andthendiscountthatresultbacktoperiod0Hereweareusinga10%discountrate0123450010010010010010067PV2=379.08PV0=313.29PVofaDeferredAnnuity(cont.)Step1:Step2:FVofaDeferredAnnuityThefuturevalueofadeferredannuityiscalculatedinexactlythesamewayasanyotherannuityTherearenoextrastepsatallUnevenCashFlowsVeryoftenaninvestmentoffersastreamofcashflowswhicharenoteitheralumpsumoranannuityWecanfindthepresentorfuturevalueofsuchastreambyusingtheprincipleofvalueadditivityUnevenCashFlows:AnExample(1)Assumethataninvestmentoffersthefollowingcashflows.Ifyourrequiredreturnis7%,whatisthemaximumpricethatyouwouldpayforthisinvestment?012345100200300UnevenCashFlows:AnExample(2)Supposethatyouweretodepositthefollowingamountsinanaccountpaying5%peryear.Whatwouldthebalanceoftheaccountbeattheendofthethirdyear?012345300500700Non-annualCompoundingSofarwehaveassumedthatthetimeperiodisequaltoayearHowever,thereisnoreasonthatatimeperiodcan’tbeanyotherlengthoftimeWecouldassumethatinterestisearnedsemi-annually,quarterly,monthly,daily,oranyotherlengthoftimeTheonlychangethatmustbemadeistomakesurethattherateofinterestisadjustedtotheperiodlengthNon-annualCompounding(cont.)Supposethatyouhave$1,000availableforinvestment.Afterinvestigatingthelocalbanks,youhavecompiledthefollowingtableforcomparison.Inwhichbankshouldyoudeposityourfunds?Non-annualCompounding(cont.)Tosolvethisproblem,youneedtodeterminewhichbankwillpayyouthemostinterestInotherwords,atwhichbankwillyouhavethehighestfuturevalue?Tofindout,let’schangeourbasicFVequationslightly:Inthisversionoftheequation‘m’isthenumberofcompoundingperiodsperyearNon-annualCompounding(cont.)WecanfindtheFVforeachbankas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025甘肅藥業(yè)投資集團(tuán)有限公司公開招聘集團(tuán)公司財(cái)務(wù)人員5人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025浙江金華金開招商招才服務(wù)集團(tuán)有限公司招聘勞動(dòng)合同制工作人員70人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025年青海西寧公交集團(tuán)有限責(zé)任公司招錄駕駛員崗位120人筆試參考題庫附帶答案詳解(3卷合一版)
- 2025年融通科研院社會(huì)招聘筆試參考題庫附帶答案詳解(3卷)
- 2025年度河南許昌煙草機(jī)械有限責(zé)任公司公開招聘人員21人筆試參考題庫附帶答案詳解(3卷)
- 2025年中化學(xué)南方建設(shè)投資有限公司公開招聘8人筆試參考題庫附帶答案詳解(3卷)
- 2025中國電信天翼數(shù)字生活科技有限公司招聘筆試參考題庫附帶答案詳解(3卷)
- 福州市2024福建福州經(jīng)濟(jì)技術(shù)開發(fā)區(qū)機(jī)關(guān)事務(wù)服務(wù)中心招聘編外聘用人員筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 大寧縣2024山西臨汾大寧縣引進(jìn)在外工作大寧籍人才回鄉(xiāng)筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 南京市2024中國藥科大學(xué)基建后勤處招聘2人筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 2025安徽宣城寧國市面向社會(huì)招聘社區(qū)工作者25人(公共基礎(chǔ)知識(shí))綜合能力測(cè)試題附答案解析
- 廣東省廣州市越秀區(qū)2024-2025學(xué)年上學(xué)期期末考試九年級(jí)數(shù)學(xué)試題
- 2025年區(qū)域經(jīng)濟(jì)一體化發(fā)展模式可行性研究報(bào)告及總結(jié)分析
- 餐飲店前臺(tái)接待培訓(xùn)課件
- 四大名著經(jīng)典講解課件
- (北師大2024版)生物八上全冊(cè)知識(shí)點(diǎn)(默寫版+背誦版)
- 精神科常見藥物不良反應(yīng)
- 2025年小學(xué)必讀書目《窗邊的小豆豆》閱讀測(cè)試試題及答案
- 鋁合金車身輕量化技術(shù)-洞察與解讀
- 2025江蘇鹽城市水務(wù)集團(tuán)有限公司招聘專業(yè)人員34人筆試題庫歷年考點(diǎn)版附帶答案詳解
- 學(xué)堂在線 雨課堂 學(xué)堂云 實(shí)驗(yàn)室安全密碼 章節(jié)測(cè)試答案
評(píng)論
0/150
提交評(píng)論