版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PaperlTS2015ProbabilisticModelsforSensorSimulationsfinal.pdf 智能交通世界大會(huì)ITS智慧城市社區(qū)人工智能AI物聯(lián)網(wǎng)IT報(bào)告課件教案22ndITSWorldCongress,Bordeaux,France,59October2019PapernumberITS-2627Probabilistic SensorSimulationsforValidatingDataFusionSystemsRobinSchubert1*,NormanMattern1,RobinvanderMade21.BASELABSGmbH,Ebertstr.10,09126Chemnitz,Germany,robin.schubert@baselabs.de2.TASSInternational,TheNetherlands AbstractWiththeincreasingdeploymentofadvaneeddriverassistaneesystemsandtheongoingdevelopmentofvehicleautomation,efficientwaysofvalidating suchsystemsarebecomingacrucialpartofthedevel-opmentprocess.Inparticular,simulationsareanincreasingly important addition tofieldtrialsastheyfacilitateanearlyandautomatedevaluation.Inthispaper,aprobabilisticmethodologyforsimulatingsensordatainthecontextofadvaneeddriverassistaneesystemsandautomatedvehiclesispresented.Theobjectiveofthisapproachistoincreasethesimulationslevelofrealismwhilemaintainingbothflexibilityandadaptabilityof simulation-basedvalidation strategies.Theproposedprobabilistic sensormodelsarecomparedtorealradardatainordertoevaluatethestatisticalcharacteristicsofbothdatasets.Withthepresentedapproach,itwillbepossibletoincreasethequalityoftheinitialevaluationresultsbasedonsimulateddata.Keywords: Sensorsimulation, MonteCarlo,ProbabilisticfilteringIntroductionInordertofurtherincreaseroadsafety andtrafficefficiency,advaneeddriver assistaneesystemsarecurrently beingwidelydeployed.Inaddition,different stakeholdersarecurrently investigating howanincreasinglevelofvehicleautomationcancontributetotheseobjectives[1].Asthesesystemsaredi-rectly intervening intothedriving process,theirdesignandimplementationishighlysafety-critical.Appropriateevaluationmethodologiesareacrucialpartofanydevelopmentprocessforsuchsystems.Duetothehighcomplexityoftrafficscenarios,fieldtrialsrequireatremendouseffort including driving millions ofkilometres.Thus,evaluationmethodologiesbasedonsimulationareincreasinglyappliedProbabilisticSensorSimulationsforValidatingDataFusionSystems2inparticular,fortheearlyphasesofevaluation.Themainbenefitsofsimulationsinclude thepossibilitytoautomatetests,toconductevaluationseveniftheplatform(e.g.sensors)arenotyetavailableandtoassesssafety-criticalsituations.Ontheotherhand,thesignificaneeofsimulation-basedevaluationsstronglydependsonthequalityofthesimulations,thatis,ontheprobabilitythatrealandsimulatedtrafficseenarioswouldtriggerasimilarbehaviourofthesystemundertest.Currently,twomainapproachesofsimulatingsensordataarebeingused:Groundtruthsensormodels:Thesemodelsdeliverthetrue,undisturbedsimulatedvaluesofthesimulatedquantities(e.g.,thepositionandvelocityofvehiclesorthecurvatureofaIane).Thenotionbehindthiskindofmodelsisthatasystemwhichfailsonidealizeddatawillcertainlynotfulfilitsrequirementsinrealisticscenarios.Physics-basedsensormodels:Thesemodelsattempttocovertheinternalbehaviourofthesensorandthephysicalmeasurementprinciple.Asanexample,manysimulationenvironmentsproviderenderedcameraimagesthataccount,amongothers,forlightingandweatherconditions. Similarly,physicalradarsensorsexistthatcalculatethepropagationofelectromagneticwavesinthetrafficsceneandthedetectioncharacteristics(e.g.,theantennapatterns) orthesensor.Whileeachoftheseapproachesisjustifiedforcertainusecases,bothlevelsofmodelling haveparticulardrawbacks.Thedisadvantageofgroundtruthmodelsisratherobvious,astheycompletelyneglect sen-sordisturbanceswhichdeterioratesthesignificanee oftheevaluationresultsobtainedwithsuchmodels.Thoughphysicalmodelsappeartoovercomethislimitationbymaximizingtherealismofthesimulateddata,theirdrawbacksareratheraveryhighcomputationalcomplexityandevenmore importantaratherlimitedpossibilitytoadaptthesimulationtodifferent sensortypes.Infact,exchanging,e.g.,aDopplerradarbyafrequencymodulatedcontinuouswave(FMCW)radarimpliestodevelopacom-pletelynewphysicalsensormodel.Table1ComparisonofdifferentabstractionlayersofsensormodelsforsimulationCriteriaGroundTruthModelsPhysicalModelsProbabilisticModelsErrorCharacteristicsidealizedrealisticrealisticstatisticsComputationalComplexitylowveryhighLowAdaptabilitytospecific sensorsn/averyhighlowProbabilisticSensorSimulationsforValidatingDataFusionSystems3Figure1GeneralstructureoftheprobabilisticsensormodelapproachInthispaper,anintermediateabstractionlayerforsensorsimulations ispresentedwhichintegrates sen-sordisturbancesprobabilistically.Thus,theobjectiveistherepresenttheerrorstatisticsofrealsensordataratherthanthedatathemselves.Table1givesacomparisonofthisapproachandthetwoclassicalmodellinglayers.Thepaperdescribesthetechnicalapproachandpresentsfirstresultsthathavebeenobtainedbycomparingprobabilisticallysimulateddatatorealdatainatypicaltraffic scene. Technical approachandchallengesThe generalideaofthepresentedapproachthatisillustratedinfigure1appearsratherstraightforward:Theidealizedsensordatageneratedfromagroundtruthsensormodelaresuperimposedbyanerrorsignalusingarandomgenerator.Inpractice,thiscanbedoneusingaMonteCarloapproach(forinstanee, rejection sampling[2]).Thisapproachcanbeappliedtodifferenttypesofsensorerrors,includingSensornoiseforeachmeasuredguanLily,l?alsenegativedetectionSjl;alsepositivedetecLions,Timingenvors(deterministic/probabilistic sensorlatencies)Themajorchallengeistoselectanappropriateprobabilisticdensityfunction(PDF)tosamplefrom.ThisPDFneedstorepresenttherealcharacteristicsofthesensorwhilestillfacilitatingadaptability.Thisadaptabilityshallnotonlycoverdifferent
sensors,butalsodifferent environments,weatherconditions,etc.Thistrade-offisachievedbydefiningaparticulartypeofPDFforeacherrortype(e.g.aPoissondistributionfordetectionerrororaRayleigh distribution forradardetections).However,theparametersofthesePDFs(e.g.,theclutterdensityforaPoissondistribution)canstillbesetaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromSimulationProbabilisticSensorModelsSimulationSimulationProbabilisticSensorModelsSimulationEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforValidating DataFusionSystems4CaseStudyInordertocomparetheprobabilisticallysimulatedsensordatawithrealdata,thefollowingevaluationmethodologyhasbeenapplied:DatafromvarioussensorshavebeenrecordedusingthedatahandlingframeworkBASELABSConnect[3].Thedataincludescameraimagesanddetectionsofa77GHzFMCWradar,Fromtherecordeddata,asimulationsscenariohasbeenderivedusingthesimulationsoftwarePresScan[4].Vehiclesinfrontoftheegovehiclehavebeensimulatedusingagroundtruthpositionandvelocitysensor(cp.figures2).Figure2Comparisonofrealandsimulatedtraffic scenariousedfortheevaluation. Figure3:IdealizedandmodifiedradarmeasurementsProbabilisticSensorSimulationsforValidatingDatafusionSystems5Usingtheapproachpresentedinthispaper,sensornoisehasbeenaddedtotherange,rangerate,andazimuthmeasurementsoftheradargroundtruthdata.Inaddition, detectionerrorsincludingfalsenegativesandfalseposiLives(c1ntter)hriveheenridded. Th^已mncharacteristicsoftheprobabilisticsensormodelshavebeencomparedtothestatisticsoftherealsradardata(includingthedetectionperformaneeandthemeasurementaccuracy)asshowninfigure3.Thecomparisonshowsthatthesimulateddisturbeddatarepresentsthesta-tisticalcharacteristicsofthetruedatareasonablywellwhichdoesnotappearsurprising,astheparametersoftherandomgeneratorhavebeenderivedfromtheseverymeasurementsbefore.Thisexemplaryevaluationshowsthatitiscomparablyeasytogenerate simulateddisturbedsensordataifthestatisticalpropertiesofthesensorundertestarewellknown.ResultsIn additiontothequalitativeevaluationdescribedintheprevioussection,aquantitativevalidationhas beenconducted.Theobjectivewastoensurethatthestatisticalpropertiesthataresupposedtobemod-elledcanbeindeedfoundinthesimulatedsensordata.Inthefollowing,theresultsforthedetectionerrorsarepresented:Forfalsenegatives,theuseroftheprobabilisticsensormodelmaydefinethedetection probabilityofthesimulatedsensor.Fromallsimulateddetections,asubsetischosesprobabilisticallythatissimulatedasnotdetectedand,thus,isnotdeliveredtotheoutputofthesimulationmodel.Infigure4,thecumulatedratiobetweenthedetectedobjectsandtheexistingobjectsisillustrated.Forthisexperiment,aparameterof=0.7hasbeenused.Itcanbeobservedthatwhileatthebeginningofthesimulation,theresultingratioisratherdynamic,itisconvergingagainst70%duringthesimula-tion.Thevalidationofthefalsepositivedetectionsrequiresabitmoreofexplanation:Themainparameterofthesimulationforthiseffectisthenumberoffalsepositivedetectionswithinthefieldofview.Thisparameterisnotprobabilisticonthecontrary,itisadeterministicvalue(whichmeansthatifthevalueissetto2,exactly2falsepositivedetectionsaresimulatedateachtimestep.However,thepositionsofthefalsepositive detectionsarechosenprobabilistically.ConsidertheexampleofanACCshowninfigure5:Theegovehicleisadjustingitsspeedaccordingtothedistaneeandthevelocityofthetargetvehicleinfrontofhim.Afalsepositivedeteetionontheneighbourlaneandinfrontofthetargetvehiclewillnotchangethebehaviourofthesystem.However,afalsepositivedetectionbetweentheegoandthehostvehiclewillhaveaneffect.Thus,theareaoftheegolanebetweenbothvehiclescanbeconsideredanareaofinterest fortheACCwithrespecttofalsepositivedetections.ProbabilisticSensorSimulationsforValidatingDataFusionSystems6Thequestionishowmanyfalsepositivedetectionswilloccurwithinthisareaofinterest.DatafusionsystemstypicallyassumethatthenumberoffalsepositivedetectionsisfollowingaPoissondistribution, whosedensitycanbecalculatedbymultiplyingthenumberoffalsepositivedetectionswiththeratiobetweentheareaofinterestandtheareaofthefieldofview.Figure6showsboththetheoreticalPoissondistributionforthegivenscenarioaswellastheempiricalvalues.Itcanbeseenthatthesimulationfitswelltothetheoreticalassumptions.Thevalidation showsthatthesimulatedmeasurementsbehaveaccordingtotheassumptionstypicaldatafusionsystemshave(thatis,Gaussiannoise,adefineddetectionprobabilityandafalsepositivedensitythatfollowsaPoissondistribution).Thus,thesimulationcanbeconvenientlyusedtotestandvalidatedatafusionsystemsanddeterminetheirbehaviourunderthecondition thattheirassumptionshold.Fu-tureworkwillalsoincludethesimulationofeffectsthatviolatessuchassumptions. ProbabilisticSensorSimulations forValidating DataFusionSystems7Figure4:Simulatedfalsenegativedetections.Inthetopdiagram,thetimestepsfrom0to500are
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在藥物臨床試驗(yàn)中的藥物研發(fā)策略-1
- 深度解析(2026)《GBT 20484-2017冷空氣等級(jí)》
- 高效備戰(zhàn)元數(shù)據(jù)標(biāo)注員面試題庫(kù)及答案
- 審計(jì)專員招聘面試題庫(kù)及答案解析
- 測(cè)試開發(fā)工程師面試技巧與案例分析含答案
- 寧波梅山新區(qū)經(jīng)濟(jì)發(fā)展局工作人員績(jī)效考核含答案
- 財(cái)務(wù)分析師面試全攻略與問(wèn)題解析
- 深度解析(2026)《GBT 19346.2-2017非晶納米晶合金測(cè)試方法 第2部分:帶材疊片系數(shù)》
- 深度解析(2026)《GBT 19247.2-2003印制板組裝 第2部分 分規(guī)范 表面安裝焊接組裝的要求》
- 公關(guān)總監(jiān)崗位能力考試題庫(kù)含答案
- 學(xué)堂在線 大數(shù)據(jù)與城市規(guī)劃 期末考試答案
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
- 00和值到27和值的算法書
- 冠脈支架內(nèi)血栓的防治策略課件
- 青海湖的無(wú)邊湖光
- 華文慕課計(jì)算機(jī)網(wǎng)絡(luò)原理和因特網(wǎng)(北京大學(xué))章節(jié)測(cè)驗(yàn)答案
- 員工激勵(lì)管理方案模板
- GB/T 5008.2-2005起動(dòng)用鉛酸蓄電池產(chǎn)品品種和規(guī)格
- GB/T 27696-2011一般起重用4級(jí)鍛造吊環(huán)螺栓
- GB/T 25000.10-2016系統(tǒng)與軟件工程系統(tǒng)與軟件質(zhì)量要求和評(píng)價(jià)(SQuaRE)第10部分:系統(tǒng)與軟件質(zhì)量模型
- GB/T 21470-2008錘上鋼質(zhì)自由鍛件機(jī)械加工余量與公差盤、柱、環(huán)、筒類
評(píng)論
0/150
提交評(píng)論