2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第1頁
2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第2頁
2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第3頁
2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第4頁
2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省湖州市第四中學數(shù)學九年級第一學期期末經(jīng)典模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P、Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A. B. C. D.2.如圖所示的幾何體,它的左視圖是()A. B. C. D.3.如果1是方程的一個根,則方程的另一個根是()A. B.2 C. D.14.將拋物線y=﹣(x+1)2+3向右平移2個單位后得到的新拋物線的表達式為()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+35.把方程的左邊配方后可得方程()A. B. C. D.6.下列運算正確的是()A.x6÷x3=x2 B.(x3)2=x5 C. D.7.下列各點中,在反比例函數(shù)圖像上的是()A. B. C. D.8.在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.如圖是某貨站傳送貨物的機器的側(cè)面示意圖.,原傳送帶與地面的夾角為,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.則新傳送帶的長度為()A. B. C. D.無法計算10.如圖,點A,B,C都在⊙O上,∠ABC=70°,則∠AOC的度數(shù)是()A.35° B.70° C.110° D.140°11.若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),則拋物線y=ax2+bx的對稱軸為()A.直線x=1 B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣412.如圖,△ABC與△A′B′C′是位似圖形,PB′=BB′,A′B′=2,則AB的長為()A.1 B.2 C.4 D.8二、填空題(每題4分,共24分)13.拋物線y=(x﹣1)2﹣2與y軸的交點坐標是_____.14.如圖,圓錐的底面直徑,母線的中點處有一食物,一只小螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為___________15.如圖,中,,,,__________.16.某中學去年舉辦競賽,頒發(fā)一二三等獎各若干名,獲獎人數(shù)依次增加,各獲獎學生獲得的獎品價值依次減少(獎品單價都是整數(shù)元),其中有3人獲得一等獎,每人獲得的獎品價值34元,二等獎的獎品單價是5的倍數(shù),獲得三等獎的人數(shù)不超過10人,并且獲得二三等獎的人數(shù)之和與二等獎獎品的單價相同.今年又舉辦了競賽,獲得一二三等獎的人數(shù)比去年分別增加了1人、2人、3人,購買對應(yīng)獎品時發(fā)現(xiàn)單價分別上漲了6元、3元、2元.這樣,今年購買獎品的總費用比去年增加了159元.那么去年購買獎品一共花了__________元.17.如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.18.拋物線經(jīng)過點,則這條拋物線的對稱軸是直線__________.三、解答題(共78分)19.(8分)用適當?shù)姆椒ń夥匠蹋海?)x2+2x=0(2)x2﹣4x+1=020.(8分)兩個相似多邊形的最長邊分別為6cm和8cm,它們的周長之和為56cm,面積之差為28cm2,求較小相似多邊形的周長與面積.21.(8分)我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設(shè)CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結(jié)論.22.(10分)在平面直角坐標系中(如圖),已知拋物線經(jīng)過點,與軸交于點,,拋物線的頂點為點,對稱軸與軸交于點.(1)求拋物線的表達式及點的坐標;(2)點是軸正半軸上的一點,如果,求點的坐標;(3)在(2)的條件下,點是位于軸左側(cè)拋物線上的一點,如果是以為直角邊的直角三角形,求點的坐標.23.(10分)平行四邊形的對角線相交于點,的外接圓交于點且圓心恰好落在邊上,連接,若.(1)求證:為切線.(2)求的度數(shù).(3)若的半徑為1,求的長.24.(10分)如圖,在中,,,,平分交于點,過點作交于點,點是線段上的動點,連結(jié)并延長分別交,于點、.(1)求的長.(2)若點是線段的中點,求的值.(3)請問當?shù)拈L滿足什么條件時,在線段上恰好只有一點,使得?25.(12分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關(guān)系;(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側(cè),其他條件不變;①請直接寫出CF,BC,CD三條線段之間的關(guān)系;②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.26.拋物線與軸交于兩點(點在點的左側(cè)),與軸交于點.已知,拋物線的對稱軸交軸于點.(1)求出的值;(2)如圖1,連接,點是線段下方拋物線上的動點,連接.點分別在軸,對稱軸上,且軸.連接.當?shù)拿娣e最大時,請求出點的坐標及此時的最小值;(3)如圖2,連接,把按照直線對折,對折后的三角形記為,把沿著直線的方向平行移動,移動后三角形的記為,連接,,在移動過程中,是否存在為等腰三角形的情形?若存在,直接寫出點的坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【解題分析】如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【題目詳解】如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1,交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是2.故選C.【題目點撥】本題考查了切線的性質(zhì)、三角形中位線定理等知識,解題的關(guān)鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.2、D【解題分析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.3、A【分析】利用方程解的定義找到相等關(guān)系,將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出方程的另一根.【題目詳解】設(shè)方程的另一根為.又解得:故選A.【題目點撥】本題考查根與系數(shù)的關(guān)系,解題突破口是將1代入兩根之積公式和兩根之和公式列出方程組.4、B【解題分析】解:∵將拋物線y=﹣(x+1)2+1向右平移2個單位,∴新拋物線的表達式為y=﹣(x+1﹣2)2+1=﹣(x﹣1)2+1.故選B.5、A【分析】首先把常數(shù)項移項后,再在左右兩邊同時加上一次項系數(shù)的一半的平方,繼而可求得答案.【題目詳解】,,,.故選:.【題目點撥】此題考查了配方法解一元二次方程的知識,此題比較簡單,注意掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.6、D【分析】分別根據(jù)同底數(shù)冪的乘法法則,冪的乘方運算法則,算術(shù)平方根的定義以及立方根的定義逐一判斷即可.【題目詳解】解:A.x6÷x3=x3,故本選項不合題意;B.(x3)2=x6,故本選項不合題意;C.,故本選項不合題意;D.,正確,故本選項符合題意.故選:D.【題目點撥】本題主要考查了算術(shù)平方根、立方根、同底數(shù)冪的除法以及冪的乘方與積的乘方,熟記修改運算法則是解答本題的關(guān)鍵.7、C【分析】把每個點的坐標代入函數(shù)解析式,從而可得答案.【題目詳解】解:當時,故A錯誤;當時,故B錯誤;當時,故C正確;當時,故D錯誤;故選C.【題目點撥】本題考查的是反比例函數(shù)圖像上點的坐標特點,掌握以上知識是解題的關(guān)鍵.8、B【解題分析】由題意根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;C、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意.故選:B.【題目點撥】本題主要考查軸對稱圖形和中心對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、B【分析】根據(jù)已知條件,在中,求出AD的長,再在中求出AC的值.【題目詳解】,,=8即即故選B.【題目點撥】本題考查了解直角三角形的應(yīng)用,熟練掌握特殊角的三角函數(shù)值是解題的關(guān)鍵.10、D【分析】根據(jù)圓周角定理問題可解.【題目詳解】解:∵∠ABC所對的弧是,

∠AOC所對的弧是,

∴∠AOC=2∠ABC=2×70°=140°.

故選D.【題目點撥】本題考查圓周角定理,解答關(guān)鍵是掌握圓周角和同弧所對的圓心角的數(shù)量關(guān)系.11、C【解題分析】∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),∴﹣2a+b=0,即b=2a.∴拋物線y=ax2+bx的對稱軸為直線.故選C.12、C【分析】根據(jù)位似圖形的對應(yīng)邊互相平行列式計算,得到答案.【題目詳解】∵△ABC與△A′B′C′是位似圖形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故選:C.【題目點撥】本題考查的是位似變換的概念、相似三角形的性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、(0,﹣1)【解題分析】將x=0代入y=(x﹣1)2﹣2,計算即可求得拋物線與y軸的交點坐標.【題目詳解】解:將x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以拋物線與y軸的交點坐標是(0,﹣1).故答案為:(0,﹣1).【題目點撥】本題考查了二次函數(shù)圖象上點的坐標特征,根據(jù)y軸上點的橫坐標為0求出交點的縱坐標是解題的關(guān)鍵.14、15【分析】先將圓錐的側(cè)面展開圖畫出來,然后根據(jù)弧長公式求出的度數(shù),然后利用等邊三角形的性質(zhì)和特殊角的三角函數(shù)在即可求出AD的長度.【題目詳解】圓錐的側(cè)面展開圖如下圖:∵圓錐的底面直徑∴底面周長為設(shè)則有解得又∴為等邊三角形為PB中點∴螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為故答案為:.【題目點撥】本題主要考查圓錐的側(cè)面展開圖,弧長公式和解直角三角形,掌握弧長公式和特殊角的三角函數(shù)值是解題的關(guān)鍵.15、18【分析】根據(jù)勾股定理和三角形面積公式得,再通過完全平方公式可得.【題目詳解】因為中,,,,所以所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案為:18【題目點撥】考核知識點:勾股定理.靈活根據(jù)完全平方公式進行變形是關(guān)鍵.16、257【分析】根據(jù)獲獎人數(shù)依次增加,獲得二三等獎的人數(shù)之和與二等獎獎品的單價相同,以及二等獎獎品單價為5的倍數(shù),可知二等獎的單價為10或15,分別討論即可得出答案.【題目詳解】設(shè)二等獎人數(shù)為m,三等獎人數(shù)為n,二等獎單價為a,三等獎單價為b,根據(jù)題意列表分析如下:一等獎二等獎三等獎去年獲獎人數(shù)3mn獎品單價34ab今年獲獎人數(shù)3+1=4m+2n+3獎品單價34+6=40a+3b+2∵今年購買獎品的總費用比去年增加了159元∴整理得∵,,為5的倍數(shù)∴的值為10或15當時,,代入得,解得不符合題意,舍去;當時,有3種情況:①,,代入得,解得,符合題意此時去年購買獎品一共花費元②,,代入得,解得,不符合題意,舍去③,,代入得,解得,不符合題意,舍去綜上可得,去年購買獎品一共花費257元故答案為:257.【題目點撥】本題考查了方程與不等式的綜合應(yīng)用,難度較大,根據(jù)題意推出的取值,然后分類討論是解題的關(guān)鍵.17、【分析】作OH⊥AB,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,根據(jù)折疊的對稱性及三角形全等,證明AB=CD,又因AB∥CD,所以四邊形ABCD是平行四邊形,由平行四邊形面積公式即可得解.【題目詳解】如圖,作OH⊥AB,垂足為H,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,則OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四邊形ABCD是平行四邊形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四邊形ABCD的面積=AB×GH=.故答案為:.【題目點撥】本題考查圓中折疊的對稱性及平行四邊形的證明,關(guān)鍵是作輔助線,本題也可通過邊、角關(guān)系證出四邊形ABCD是矩形.18、【分析】根據(jù)拋物線的軸對稱性,即可得到答案.【題目詳解】∵拋物線經(jīng)過點,且點,點關(guān)于直線x=1對稱,∴這條拋物線的對稱軸是:直線x=1.故答案是:.【題目點撥】本題主要考查二次函數(shù)的圖象與性質(zhì),掌握拋物線的軸對稱性,是解題的關(guān)鍵.三、解答題(共78分)19、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.【分析】根據(jù)方程的特點可適當選擇解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案.【題目詳解】(1)或所以,(2),即所以,【題目點撥】本題考查了解元二次方程的方法,能夠根據(jù)題目的結(jié)構(gòu)特點選擇合適的方法解一元二次方程,熟悉直接開平方法、配方法、公式法以及因式分解法的具體步驟是解題的關(guān)鍵.20、較小相似多邊形的周長為14cm,面積為36cm1.【分析】設(shè)較小相似多邊形的周長為x,面積為y,則較大相似多邊形的周長為56﹣x,面積18+y,根據(jù)相似多邊形的性質(zhì)得到,,然后利用比例的性質(zhì)求解即可.【題目詳解】解:設(shè)較小相似多邊形的周長為x,面積為y,則較大相似多邊形的周長為56﹣x,面積18+y,根據(jù)題意得,,解得x=14,y=36,所以較小相似多邊形的周長為14cm,面積為36cm1.【題目點撥】本題考查了相似多邊形的性質(zhì):對應(yīng)角相等;對應(yīng)邊的比相等;兩個相似多邊形周長的比等于相似比;兩個相似多邊形面積的比等于相似比的平方.21、存在等對邊四邊形,是四邊形DBCE,見解析【分析】作CG⊥BE于G點,作BF⊥CD交CD延長線于F點,證明△BCF≌△CBG,得到BF=CG,再證∠BDF=∠BEC,得到△BDF≌△CEG,故而BD=CE,即四邊形DBCE是等對邊四邊形.【題目詳解】解:此時存在等對邊四邊形,是四邊形DBCE.如圖,作CG⊥BE于G點,作BF⊥CD交CD延長線于F點.∵∠DCB=∠EBC=∠A,BC為公共邊,∴△BCF≌△CBG,∴BF=CG,∵∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,∴∠BDF=∠BEC,∴△BDF≌△CEG,∴BD=CE∴四邊形DBCE是等對邊四邊形.【題目點撥】此題考查新定義形式下三角形全等的判定,由題意及圖形分析得到等對邊四邊形是四邊形DBCE,應(yīng)證明線段BD=CE,只能作輔助線通過證明三角形全等得到結(jié)論,繼而得解此題.22、(1),;(2);(3)或【分析】(1)將點A、B代入拋物線,即可求出拋物線解析式,再化為頂點式即可;

(2)如圖1,連接AB,交對稱軸于點N,則N(-,-2),利用相等角的正切值相等即可求出EH的長,OE的長,可寫出點E的坐標;

(3)分∠EAP=90°和∠AEP=90°兩種情況討論,通過相似的性質(zhì),用含t的代數(shù)式表示出點P的坐標,可分別求出點P的坐標.【題目詳解】解:(1)(1)將點A(-3,-2)、B(0,-2)代入拋物線,

得,,

解得,a=,c=-2,

∴y=x2+4x-2

=(x+)2-5,

∴拋物線解析式為y=x2+4x-2,頂點C的坐標為(-,-5);(2)如圖1,連接AB,交對稱軸于點N,則N(-,-2),,則,過作,,則,∵OH=3,∴OE=1,∴(3)①如圖2,當∠EAP=90°時,

∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,

∴∠HEA=∠MAP,

又∠AHE=∠PMA=90°,,則,設(shè),則將代入得(舍),,∴②如圖3,當∠AEP=90°時,∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,

∴∠AEG=∠EPN,

又∵∠N=∠G=90°,∴,則設(shè),則將代入得,(舍),∴綜上所述:,【題目點撥】此題考查了待定系數(shù)法求解析式,銳角三角函數(shù),直角三角形的存在性等,解題關(guān)鍵是能夠作出適當?shù)妮o助線構(gòu)造相似三角形,并注意分類討論思想的運用.23、(1)詳見解析;(2);(3)【分析】(1)連接OB,根據(jù)平行四邊形的性質(zhì)得到∠BAD=∠BCD=45°,根據(jù)圓周角定理得到∠BOD=2∠BAD=90°,根據(jù)平行線的性質(zhì)得到OB⊥BC,即可得到結(jié)論;(2)連接OM,根據(jù)平行四邊形的性質(zhì)得到BM=DM,根據(jù)直角三角形的性質(zhì)得到OM=BM,求得∠OBM=60°,于是得到∠ADB=30°;(3)連接EM,過M作MF⊥AE于F,根據(jù)等腰三角形的性質(zhì)得到∠MOF=∠MDF=30°,根據(jù)OM=OE=1,解直角三角形即可得到結(jié)論.【題目詳解】(1)證明:連接OB,∵四邊形ABCD是平行四邊形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC為⊙O切線;(2)解:連接OM,∵四邊形ABCD是平行四邊形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°;(3)解:連接EM,過M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,∵的半徑為1∴OM=OE=1,∴FM=,OF=,∴EF=1?故EM==.【題目點撥】本題考查了切線的判定,圓周角定理,平行四邊形的性質(zhì),等腰直徑三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.24、(1);(2);(3)當或時,滿足條件的點只有一個.【解題分析】(1)由角平分線定義得,在中,根據(jù)銳角三角函數(shù)正切定義即可求得長.(2)由題意易求得,,由全等三角形判定得,根據(jù)全等三角形性質(zhì)得,根據(jù)相似三角形判定得,由相似三角形性質(zhì)得,將代入即可求得答案.(3)由圓周角定理可得是頂角為120°的等腰三角形,再分情況討論:①當與相切時,結(jié)合題意畫出圖形,過點作,并延長與交于點,連結(jié),,設(shè)半徑為,由相似三角形的判定和性質(zhì)即可求得長;②當經(jīng)過點時,結(jié)合題意畫出圖形,過點作,設(shè)半徑為,在中,根據(jù)勾股定理求得,再由相似三角形的判定和性質(zhì)即可求得長;③當經(jīng)過點時,結(jié)合題意畫出圖形,此時點與點重合,且恰好在點處,由此可得長.【題目詳解】(1)解:∵平分,,∴.在中,(2)解:易得,,.由,得,.∵,∴,∴.由,得,∴∴(3)解:∵,過,,作外接圓,圓心為,∴是頂角為120°的等腰三角形.①當與相切時,如圖1,過點作,并延長與交于點,連結(jié),設(shè)的半徑則,,解得.∴,.易知,可得,則∴.②當經(jīng)過點時,如圖2,過點作,垂足為.設(shè)的半徑,則.在中,,解得,∴易知,可得③當經(jīng)過點時,如圖3,此時點與點重合,且恰好在點處,可得.綜上所述,當或時,滿足條件的點只有一個.【題目點撥】本題屬于相似形綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,圓周角定理等知識,解題的關(guān)鍵是學會利用參數(shù)構(gòu)建方程解決問題,學會利用特殊位置解決數(shù)學問題,屬于中考壓軸題.25、(1)證明見解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得.(1)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質(zhì)即可求得DF的長,則OC即可求得.【題目詳解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;

理由:∵∠BAC=90°,∠ABC=45°,

∴∠ACB=∠ABC=45°,

∴AB=AC,

∵四邊形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAD=90°-∠DAC,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論