版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆山西省大同市靈丘四中學九年級數(shù)學第一學期期末預測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.已知反比例函數(shù)y=的圖象經(jīng)過點(3,2),那么下列四個點中,也在這個函數(shù)圖象上的是()A.(3,-2) B.(-2,-3) C.(1,-6) D.(-6,1)2.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處3.函數(shù)與的圖象如圖所示,有以下結(jié)論:①b2-4c>1;②b+c=1;③3b+c+6=1;④當1<<3時,<1.其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.小明利用計算機列出表格對一元二次方程進行估根如表:那么方程的一個近似根是()A. B. C. D.5.某車庫出口安裝的欄桿如圖所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么適合該地下車庫的車輛限高標志牌為()(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.6.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊7.如圖,在△ABC中,DE∥BC,若=,則的值為()A. B. C. D.8.如圖,中,且,若點在反比例函數(shù)的圖象上,點在反比例函數(shù)的圖象上,則的值為()A. B. C. D.9.在下列四種圖形變換中,如圖圖案包含的變換是()A.平移、旋轉(zhuǎn)和軸對稱 B.軸對稱和平移C.平移和旋轉(zhuǎn) D.旋轉(zhuǎn)和軸對稱10.一元二次方程的一根是1,則的值是()A.3 B.-3 C.2 D.-2二、填空題(每小題3分,共24分)11.在一個布袋中裝有只有顏色不同的a個小球,其中紅球的個數(shù)為2,隨機摸出一個球記下顏色后再放回袋中,通過大量重復實驗和發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出a大約是____________.12.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.13.△ABC與△DEF的相似比為1:4,則△ABC與△DEF的周長比為.14.圓錐的底面半徑是4,母線長是9,則它的側(cè)面展開圖的圓心角的度數(shù)為______.15.函數(shù)是關(guān)于反比例函數(shù),則它的圖象不經(jīng)過______的象限.16.如圖1,點M,N,P,Q分別在矩形ABCD的邊AB,BC,CD,DA上,我們稱四邊形MNPQ是矩形ABCD的內(nèi)接四邊形.已知矩形ABCD,AB=2BC=6,若它的內(nèi)接四邊形MNPQ也是矩形,且相鄰兩邊的比為3:1,則AM=_____.17.如圖,已知反比例函數(shù)的圖象經(jīng)過斜邊的中點,與直角邊相交于點.若的面積為8,則的值為________.18.若,則=______三、解答題(共66分)19.(10分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.20.(6分)計算:4+(-2)2×2-(-36)÷421.(6分)在平面直角坐標系xOy中,拋物線y=x2+bx+c交x軸于A(﹣1,0),B(3,0)兩點,交y軸于點C.(1)如圖1,求拋物線的解析式;(2)如圖2,點P是第一象限拋物線上的一個動點,連接CP交x軸于點E,過點P作PK∥x軸交拋物線于點K,交y軸于點N,連接AN、EN、AC,設點P的橫坐標為t,四邊形ACEN的面積為S,求S與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,點F是PC中點,過點K作PC的垂線與過點F平行于x軸的直線交于點H,KH=CP,點Q為第一象限內(nèi)直線KP下方拋物線上一點,連接KQ交y軸于點G,點M是KP上一點,連接MF、KF,若∠MFK=∠PKQ,MP=AE+GN,求點Q坐標.22.(8分)菜農(nóng)李偉種植的某蔬菜計劃以每千克5元的單價對外批發(fā)銷售,由于部分菜農(nóng)盲目擴大種植,造成該蔬菜滯銷.李偉為了加快銷售,減少損失,對價格經(jīng)過兩次下調(diào)后,以每千克3.2元的單價對外批發(fā)銷售.(1)求平均每次下調(diào)的百分率;(2)小華準備到李偉處購買5噸該蔬菜,因數(shù)量多,李偉決定再給予兩種優(yōu)惠方案以供選擇:方案一:打九折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金200元.試問小華選擇哪種方案更優(yōu)惠,請說明理由.23.(8分)如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點均在△ACD的邊上).(1)計算矩形EFGH的面積;(2)將矩形EFGH沿AB向右平移,F(xiàn)落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為時,求矩形平移的距離;(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形,將矩形繞點按順時針方向旋轉(zhuǎn),當落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形,設旋轉(zhuǎn)角為,求的值.24.(8分)如圖,⊙為的外接圓,,過點的切線與的延長線交于點,交于點,.(1)判斷與的位置關(guān)系,并說明理由;(2)若,求的長.25.(10分)(1)解方程:(2)已知關(guān)于的方程無解,方程的一個根是.①求和的值;②求方程的另一個根.26.(10分)如圖,中,,以為直徑作半圓交于點,點為的中點,連接.(1)求證:是半圓的切線;(2)若,,求的長.
參考答案一、選擇題(每小題3分,共30分)1、B【解題分析】反比例函數(shù)圖象上的點橫坐標和縱坐標的積為k,把已知點坐標代入反比例解析式求出k的值,即可做出判斷.【題目詳解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式為y=,則(-2,-3)在這個函數(shù)圖象上,故選:B.【題目點撥】此題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.2、D【解題分析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.3、C【分析】利用二次函數(shù)與一元二次方程的聯(lián)系對①進行判斷;利用,可對②進行判斷;利用,對③進行判斷;根據(jù)時,可對④進行判斷.【題目詳解】解:拋物線與軸沒有公共點,△,所以①錯誤;,,,即,所以②正確;,,,,所以③正確;時,,的解集為,所以④正確.故選:C.【題目點撥】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)與一元二次方程、二次函數(shù)與不等式,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.4、C【分析】根據(jù)表格中的數(shù)據(jù),0與最接近,故可得其近似根.【題目詳解】由表得,0與最接近,故其近似根為故答案為C.【題目點撥】此題主要考查對近似根的理解,熟練掌握,即可解題.5、A【分析】延長BA、FE,交于點D,根據(jù)AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根據(jù)sin∠AED,AE=1.2米求出AD的長,繼而可得BD的值,從而得出答案.【題目詳解】如圖,延長BA、FE,交于點D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AED,AE=1.2米,∴AD=AE?sin∠AED=1.2×sin37°≈0.72(米),則BD=AB+AD=1.18+0.72=1.9(米).故選:A.【題目點撥】本題考查了解直角三角形的應用,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形,并熟練掌握正弦函數(shù)的概念.6、B【解題分析】根據(jù)事件發(fā)生的可能性大小即可判斷.【題目詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機事件,故錯誤;故選B.【題目點撥】此題主要考查事件發(fā)生的可能性,解題的關(guān)鍵是熟知概率的定義.7、A【分析】根據(jù)平行線分線段成比例定理列出比例式,代入計算得到答案.【題目詳解】解:∵=,∴,∵DE∥BC,∴,故選:A.【題目點撥】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關(guān)系是解題的關(guān)鍵.8、D【分析】要求函數(shù)的解析式只要求出點B的坐標就可以,設點A的坐標是,過點A、B作AC⊥y軸、BD⊥y軸,分別于C、D.根據(jù)條件得到△ACO∽△ODB,利用相似三角形對應邊成比例即可求得點B的坐標,問題即可得解.【題目詳解】如圖,過點A,B作AC⊥y軸,BD⊥y軸,垂足分別為C,D,設點A的坐標是,
則,
∵點A在函數(shù)的圖象上,∴,∵∠AOB=90°,
∴∠AOC+∠BOD=∠AOC+∠CAO=90°,
∴∠CAO=∠BOD,
∴,∴∴,
∴,
∵點B在反比例函數(shù)的圖象上,
∴.故選:D【題目點撥】本題是反比例函數(shù)與幾何的綜合,考查了求函數(shù)的解析式的問題以及相似三角形的判定和性質(zhì),能夠把求反比例函數(shù)的解析式轉(zhuǎn)化為求點的坐標的問題是解題的關(guān)鍵.9、D【分析】根據(jù)圖形的形狀沿中間的豎線折疊,兩部分可重合,里外各一個順時針旋轉(zhuǎn)8次,可得答案.【題目詳解】解:圖形的形狀沿中間的豎線折疊,兩部分可重合,得軸對稱.里外各一個順時針旋轉(zhuǎn)8次,得旋轉(zhuǎn).故選:D.【題目點撥】本題考查了幾何變換的類型,平移是沿直線移動一定距離得到新圖形,旋轉(zhuǎn)是繞某個點旋轉(zhuǎn)一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時要緊扣圖形變換特點,認真判斷.10、A【解題分析】將代入方程,求出的值.【題目詳解】將代入方程得解得故答案為:A.【題目點撥】本題考查了求一元二次方程系數(shù)的問題,掌握代入求值法求解的值是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【題目詳解】解:由題意可得,=0.2,
解得,a=1.
故估計a大約有1個.
故答案為:1.【題目點撥】此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應的等量關(guān)系.12、【解題分析】解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【題目點撥】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.13、1:1.【解題分析】試題分析:∵△ABC與△DEF的相似比為1:1,∴△ABC與△DEF的周長比為1:1.故答案為1:1.考點:相似三角形的性質(zhì).14、【分析】首先求得圓錐的底面周長,即扇形的弧長,然后根據(jù)弧長的計算公式即可求得圓心角的度數(shù).【題目詳解】解:圓錐的底面周長是:,設圓心角的度數(shù)是,則,解得:.故側(cè)面展開圖的圓心角的度數(shù)是.故答案是:.【題目點撥】此題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.15、第一、三象限【解題分析】試題解析:函數(shù)是關(guān)于的反比例函數(shù),解得:比例系數(shù)它的圖象在第二、四象限,不經(jīng)過第一、三象限.故答案為第一、三象限.16、【分析】證明△AMQ∽△DQP,△PCN∽△NBM,設MA=x,則DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=9x﹣3,NB=27x﹣9,表示出NC,由BC長為3,可得方程,解方程即可得解.【題目詳解】解:∵四邊形ABCD和四邊形MNPQ為矩形,∴∠D=∠A=90°,∠DQP=∠QMA,∴△AMQ∽△DQP,同理△PCM∽△NBM,設MA=x,∵PQ:QM=3:1,∴DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=6﹣(9﹣9x)=9x﹣3,NB=3PC=27x﹣9,BM=6﹣x,∴NC=,∴=3,解得x=.即AM=.故答案為:.【題目點撥】本題考查矩形的性質(zhì),相似三角形的判定與性質(zhì),關(guān)鍵是熟練掌握相似三角形的判定與性質(zhì)及方程的思想方法.17、【分析】過D點作x軸的垂線交x軸于E點,可得到四邊形DBAE和三角形OBC的面積相等,通過面積轉(zhuǎn)化,可求出k的值.【題目詳解】解:過D點作x軸的垂線交x軸于E點,∵△ODE的面積和△OAC的面積相等.的面積與四邊形的面積相等,∴四邊形DEAB=8,設D點的橫坐標為x,縱坐標就為∵D為OB的中點.∴∴四邊形DEAB的面積可表示為:∴故答案為:【題目點撥】本題考查反比例函數(shù)的綜合運用,關(guān)鍵是知道反比例函數(shù)圖象上的點和坐標軸構(gòu)成的三角形面積的特點以及根據(jù)面積轉(zhuǎn)化求出k的值.18、【分析】可設x=4k,根據(jù)已知條件得到y(tǒng)=3k,再代入計算即可得到正確結(jié)論.【題目詳解】解:∵,∴y=3k,x=4k;代入=故答案為【題目點撥】本題考查了比例的性質(zhì)的應用,主要考查學生的計算能力,題目比較好,難度不大.三、解答題(共66分)19、S陰影=2﹣.【分析】由切線的性質(zhì)和平行四邊形的性質(zhì)得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根據(jù)弧長公式求出弧長,得到半徑,即可求出結(jié)果.【題目詳解】如圖,連接AC,∵CD與⊙A相切,∴CD⊥AC,在平行四邊形ABCD中,∵AB=DC,AB∥CD∥BC,∴BA⊥AC,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴∴的長度為解得R=2,S陰=S△ACD-S扇形=【題目點撥】此題主要考查圓內(nèi)的面積計算,解題的關(guān)鍵是熟知平行四邊形的性質(zhì)、切線的性質(zhì)、弧長計算及扇形面積的計算.20、21【解題分析】試題分析:先乘方,再乘除,最后再計算加減.試題解析:4+(-2)2×2-(-36)÷4,=4+4×2-(-36)÷4,=4+8-(-9),=12+9,=21.21、(1)y=x2﹣2x﹣3;(2)S=t2+t;(3)Q(,).【分析】(1)函數(shù)的表達式為:y=(x+1)(x﹣3),即可求解;(2)tan∠PCH===,求出OE=,利用S=S△NCE+S△NAC,即可求解;(3)證明△CNP≌△KRH,求出點P(4,5)確定tan∠QKP===4﹣m=tan∠QPK==NG,最后計算KT=MT=(),F(xiàn)T=4﹣(+),tan∠MFT==4﹣m,即可求解.【題目詳解】(1)函數(shù)的表達式為:y=(x+1)(x﹣3)=x2﹣2x﹣3;(2)過點P作PH⊥y軸交于點H,設點P(t,t2﹣2t﹣3),CN=t2﹣2t﹣3+3=t2﹣2t,∴tan∠PCH===,,解得:OE=,S=S△NCE+S△NAC=AE×CN=t2+t;(3)過點K作KR⊥FH于點R,∵KH=CP,∠NCP=∠H,∠R=∠PNC=90°,∴△CNP≌△KRH,∴PN=KR=NS,∵點F是PC中點,SF∥NP,∴PN=KR=NS=CN,即t=(t2﹣2t﹣3+3),解得:t=0或4(舍去0),點P(4,5),點K、P時關(guān)于對稱軸的對稱點,故點K(﹣2,5),∵OE∥PN,則,故OE=,同理AE=,設點Q(m,m2﹣2m﹣3),過點Q作WQ⊥KP于點W,WQ=5﹣(m2﹣2m﹣3)=﹣m2+2m+8,WK=m+2,tan∠QKP===4﹣m=tan∠QPK==NG,則NG=8﹣2m,MP=AE+GN=(8﹣2m)=﹣m+,KM=KP﹣MP=,過點F作FL⊥KP于點L,點F(2,1),則FL=LK=4,則∠LKF=45°,∵∠MFK=∠PKQ,tan∠MFK=tan∠QKP=4﹣m,過點M作MT⊥FK于點T,則KT=MT=(),F(xiàn)T=4﹣(),tan∠MFT==4﹣m,解得:m=11或(舍去11),故點Q(,).【題目點撥】考查了二次函數(shù)綜合運用,涉及到一次函數(shù)、三角形全等、圖形的面積計算、解直角三角形等,其中(3),運用函數(shù)的觀點,求解點的坐標.22、(1)10%.(1)小華選擇方案一購買更優(yōu)惠.【解題分析】試題分析:(1)設出平均每次下調(diào)的百分率,根據(jù)從5元下調(diào)到3.1列出一元二次方程求解即可;(1)根據(jù)優(yōu)惠方案分別求得兩種方案的費用后比較即可得到結(jié)果.試題解析:(1)設平均每次下調(diào)的百分率為x.由題意,得5(1﹣x)1=3.1.解這個方程,得x1=0.1,x1=1.8(不符合題意),符合題目要求的是x1=0.1=10%.答:平均每次下調(diào)的百分率是10%.(1)小華選擇方案一購買更優(yōu)惠.理由:方案一所需費用為:3.1×0.9×5000=14400(元),方案二所需費用為:3.1×5000﹣100×5=15000(元).∵14400<15000,∴小華選擇方案一購買更優(yōu)惠.【考點】一元二次方程的應用.23、(1);(2)矩形移動的距離為時,矩形與△CBD重疊部分的面積是;(3)【解題分析】分析:(1)根據(jù)已知,由直角三角形的性質(zhì)可知AB=2,從而求得AD,CD,利用中位線的性質(zhì)可得EF,DF,利用三角函數(shù)可得GF,由矩形的面積公式可得結(jié)果;(2)首先利用分類討論的思想,分析當矩形與△CBD重疊部分為三角形時(0<x≤),利用三角函數(shù)和三角形的面積公式可得結(jié)果;當矩形與△CBD重疊部分為直角梯形時(<x≤),列出方程解得x;(3)作H2Q⊥AB于Q,設DQ=m,則H2Q=m,又DG1=,H2G1=,利用勾股定理可得m,在Rt△QH2G1中,利用三角函數(shù)解得cosα.詳解:(1)如圖①,在中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中點,∴AD=1,.又∵EF是的中位線,∴,在中,AD=CD,∠A=60°,∴∠ADC=60°.在中,60°,∴矩形EFGH的面積.(2)如圖②,設矩形移動的距離為則,當矩形與△CBD重疊部分為三角形時,則,,∴.(舍去).當矩形與△CBD重疊部分為直角梯形時,則,重疊部分的面積S=,∴.即矩形移動的距離為時,矩形與△CBD重疊部分的面積是.(3)如圖③,作于.設,則,又,.在Rt△H2QG1中,,解之得(負的舍去).∴.點睛:本題主要考查了直角三角形的性質(zhì),中位線的性質(zhì)和三角函數(shù)定義等,利用分類討論的思想,構(gòu)建直角三角形是解答此題的關(guān)鍵.24、(1)OE∥BC.理由見解析;(2)【分析】(1)連接OC,根據(jù)已知條件可推出,進一步得出結(jié)論得以證明;(2)根據(jù)(1)的結(jié)論可得出∠E=∠BCD,對應的正切值相等,可得出CE的值,進一步計算出OE的值,在Rt△AFO中,設OF=3x,則AF=4x,解出x的值,繼而得出OF的值,從而可得出答案.【題目詳解】解:(1)OE∥BC.理由如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年公安縣聯(lián)通公司招聘備考題庫附答案詳解
- 2026年中國科學院海洋研究所科研學術(shù)助理招聘備考題庫及完整答案詳解1套
- 2026年中國人壽安順分公司西秀支公司招聘:保單服務專員備考題庫及1套參考答案詳解
- 2026年國家廣播電視總局六九四臺校園招聘備考題庫及完整答案詳解1套
- 2026年南京大學公開招聘水處理與水環(huán)境修復教育部工程研究中心主任備考題庫及1套參考答案詳解
- 2026年東興邊檢招聘輔警備考題庫及完整答案詳解一套
- 西北銷售分公司招聘筆試題庫2026
- 工業(yè)廢料采購合同范本
- 規(guī)范銷售合同審計制度
- 監(jiān)管規(guī)范銀行理財制度
- 2025廣東省橫琴粵澳開發(fā)投資有限公司第二批社會招聘21人筆試歷年典型考點題庫附帶答案詳解試卷2套
- 塔吊拆除安全操作培訓
- 2025年及未來5年中國抓娃娃機行業(yè)市場全景監(jiān)測及投資前景展望報告
- 國家安全生產(chǎn)十五五規(guī)劃
- 電機與拖動基礎期末試卷及答案
- 時尚男裝陳列課件
- 2025年本科院校實驗員職位面試攻略及模擬題
- DJG330521-T 102-2024 企業(yè)能級工資集體協(xié)商工作評價規(guī)范
- 交警執(zhí)勤執(zhí)法培訓課件
- 瓶裝水廠管理辦法
- 2025年港口碼頭安全隱患排查計劃
評論
0/150
提交評論