付費下載
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一種顧及多特征的建筑物變化檢測方法AbstractAsthedemandforbuildingmonitoringandassessmentincreases,thedetectionofbuildingchangeshasbecomeacrucialtask.Traditionalmethodsforbuildingchangedetectiontypicallyfocusonidentifyingdifferencesbetweentwoimagesofthesameareacapturedatdifferenttimes.However,thereareseveralchallengesassociatedwiththisapproach,asitcanbedifficulttodeterminewhatchangestoconsiderandhowtoclassifythem.Inthispaper,weproposeanewapproachtobuildingchangedetectionthattakesintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Ourapproachincludestheuseofhigh-resolutionsatelliteimages,lidardata,andgeographicinformation,andemploysmachinelearningalgorithmstoanalyzethesedata.WevalidateourapproachbyapplyingittoacasestudyofaresidentialareainHongKong,anddemonstratethatitcansuccessfullydetectbothsubtleandsignificantchangesinbuildingswhilemitigatingfalsepositives.IntroductionThedetectionofbuildingchangeshassubstantialimportanceforurbanplanning,disasterresponse,andenvironmentalmonitoring.Thetraditionalmethodsofbuildingchangedetectionrelyoncomparingtwoimagesofthesameareacapturedatdifferenttimes,andidentifyingdifferencesbetweenthem.Thesemethodsprovidesomeinsightregardingthespatialextentandnatureofthedetectedchanges.However,thesemethodstendtoproducelargenumbersoffalsepositivesandfalsenegatives,primarilybecausetheyfocusonthepreciselocalizationofchangeratherthanonitscharacterization.Moreover,buildingshavecomplexgeometriesandmaterialsthatposesignificantchallengestoimageanalysis.Therefore,itisessentialtodevelopamorerobustandcomprehensiveapproachtobuildingchangedetection.Theproposedapproachinvolvestakingintoaccountmultiplefeaturesandcharacteristicsofthebuildinganditssurroundings.Thisapproachisachievedthroughtheintegrationofhigh-resolutionsatelliteimages,lidardata,andgeographicinformationthatprovideacomprehensiveunderstandingofthebuilding.Moreover,throughtheuseofmachinelearningalgorithms,theapproachleveragesthecomputationalpowertoanalyzethesedatasetsanddetectbuildingchanges.Theobjectiveofthisworkistoprovideanewapproachforbuildingchangedetectionthatbettercharacterizesthechangeswhilereducingfalsepositives.MethodologyTheproposedapproachcombinesmultipledatasetsthatincludesatelliteimages,lidardata,andgeographicinformation.Thesatelliteimagesprovidethevisualrepresentationofthechangesthathaveoccurredinthebuilding.Thelidardataprovidesthethree-dimensionalrepresentationofthebuildinganditssurroundingarea,furtherimprovingtheaccuracyofthedetectedchanges.Geographicinformationincludesinformationaboutthebuildinglocation,land-use,historicalandenvironmentalconsiderations.Theapproachincorporatestwostagesofprocessing.Thefirststagefocusesondatapreparation,includingimagecalibration,radiometricnormalization,imageregistration,andsegmentation.Inthesecondstage,machinelearningalgorithmsareappliedtodifferentsetsoffeaturesthatincludespectral,textural,andgeometricinformationtodetectthechangesinthebuilding.Acriticalfeatureusedinthemachinelearningmodelsistheuseofunsupervisedlearningalgorithmsthatallowforthedetectionofsubtlechangesthatmaynotbeidentifiedbytraditionalmethods.Themodelsaretrainedandtestedonasub-regionofthestudyarea,andcomparedwithtraditionalchangedetectionmethodsbasedonimagedifferencing.ResultsandDiscussionTheperformanceoftheproposedapproachisevaluatedonacasestudyofaresidentialareainHongKong.Theapproachdetectedchangesinthebuildings,includingroofchanges,newconstructions,andalterationsinbuildingshapes.Theaccuracyofthemethodwasevaluatedusingground-truthdatacollectedfromthefieldsurvey.Theresultsshowedthattheproposedmethodhashigheraccuracyindetectingbuildingchangescomparedtotraditionalchangedetectionmethods.Inparticular,ithasahigherabilitytodetectsubtlechanges,mitigatingfalsepositivesresultingfromshadows,andseasonalvariations.Theproposedmethod,therefore,providesarobusttoolforbuildingchangedetection.ConclusionTheproposedapproachforbuildingchangedetectionprovidesnewinsightsandmethodsforurbanplanning,disasterresponse,andenvironmentalmonitoring.Themethoddemonstratedinthisworkintegratesmultiplefeaturesandcharacteristicsofthebuildinganditssurroundingsthroughtheuseofsatelliteimages,lidardata,andgeographicinformation.Additionally,themethodemploysmachinelea
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- IT項目管理實踐經(jīng)驗總結與分享
- AI智能時代下智慧城市建設的新思路探討
- 2026年北京市東城區(qū)和平里社區(qū)衛(wèi)生服務中心公開招聘備考題庫及參考答案詳解一套
- 企業(yè)信息管理標準化平臺
- 2026年吐魯番市消防救援支隊面向社會公開招聘政府專職消防員16人備考題庫及參考答案詳解一套
- 2026年安慶市人力資源服務有限公司公開招聘勞務派遣員工備考題庫及參考答案詳解
- 2026年南京師范大學附屬中學棟梁學校保健教師招聘備考題庫及一套參考答案詳解
- 2026年三明市疾病預防控制中心公開招聘工作人員備考題庫完整答案詳解
- 2026年上海航天設備制造總廠有限公司招聘備考題庫及答案詳解一套
- 2026年東營市金湖學校公開招聘勞務派遣教師備考題庫及參考答案詳解1套
- 清華大學教師教學檔案袋制度
- 公租房完整租賃合同范本
- 東南大學附屬中大醫(yī)院2026年招聘備考題庫及答案詳解參考
- 2025新疆阿瓦提縣招聘警務輔助人員120人參考筆試題庫及答案解析
- 貴州國企招聘:2025貴州鹽業(yè)(集團)有限責任公司貴陽分公司招聘考試題庫附答案
- 2025-2026學年秋季學期教學副校長工作述職報告
- GB/T 3098.5-2025緊固件機械性能第5部分:自攻螺釘
- 2026年服裝電商直播轉(zhuǎn)化技巧
- 2025-2026學年小學美術浙美版(2024)二年級上冊期末練習卷及答案
- 會所軟裝合同范本
- 沖刺2026中考-科學備考班會課件
評論
0/150
提交評論