2023年全國工業(yè)和信息化技術(shù)技能大賽-工業(yè)大數(shù)據(jù)算法賽項大賽方案、實操和理論賽題樣題、技術(shù)文件_第1頁
2023年全國工業(yè)和信息化技術(shù)技能大賽-工業(yè)大數(shù)據(jù)算法賽項大賽方案、實操和理論賽題樣題、技術(shù)文件_第2頁
2023年全國工業(yè)和信息化技術(shù)技能大賽-工業(yè)大數(shù)據(jù)算法賽項大賽方案、實操和理論賽題樣題、技術(shù)文件_第3頁
2023年全國工業(yè)和信息化技術(shù)技能大賽-工業(yè)大數(shù)據(jù)算法賽項大賽方案、實操和理論賽題樣題、技術(shù)文件_第4頁
2023年全國工業(yè)和信息化技術(shù)技能大賽-工業(yè)大數(shù)據(jù)算法賽項大賽方案、實操和理論賽題樣題、技術(shù)文件_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

—-一、大賽內(nèi)容、形式和成績計算(一)競賽內(nèi)容本賽項內(nèi)容包含理論知識和實際操作兩部分。(二)競賽形式本賽項為雙人團體賽,分為職工組(含教師)和學(xué)生組兩個組別。(四)成績計算理論知識競賽滿分為100分,按20%的比例折算計入競賽總成績。賽題均為客觀題,采用機考方式實現(xiàn)。實際操作競賽滿分為100分,按80%的比例折算計入競賽總成績。折算后的理論知識競賽成績與實際操作競賽成績相加得出參賽選手競賽總成績,滿分為100分。二、大賽命題原則在命題方向上,聚焦新一代信息技術(shù)與制造技術(shù)深度融合領(lǐng)域,以解決工業(yè)大數(shù)據(jù)應(yīng)用實際需求為命題方向,設(shè)置算法賽題。在考核重點上,考核工業(yè)大數(shù)據(jù)算法等基本技能的同時,重點突出企業(yè)所需專業(yè)技能及新技術(shù)應(yīng)用。重點考察參賽選手構(gòu)建大數(shù)據(jù)算法模型實現(xiàn)問題解析、數(shù)據(jù)處理、特征工程、模型構(gòu)建、訓(xùn)練優(yōu)化的能力和技術(shù)水平,以及對智能制造系統(tǒng)原理的掌握程度。三、大賽范圍、賽題類型和其他(一)理論知識競賽以工業(yè)大數(shù)據(jù)和工業(yè)人工智能算法應(yīng)用知識為主,智能制造技術(shù)、數(shù)據(jù)信息安全法律法規(guī)等相關(guān)知識為輔。工業(yè)大數(shù)據(jù)平臺架構(gòu)(數(shù)據(jù)架構(gòu)、數(shù)據(jù)技術(shù)架構(gòu)、應(yīng)用平臺架構(gòu))、數(shù)據(jù)分析概述、數(shù)據(jù)收集與導(dǎo)入、數(shù)據(jù)清洗與預(yù)處理、數(shù)據(jù)挖掘基礎(chǔ)、主成分分析、分類器與決策樹、聚類思想與建模、神經(jīng)網(wǎng)絡(luò)思想與建模、深度學(xué)習(xí)基礎(chǔ)。神經(jīng)網(wǎng)絡(luò)思想與建模、深度學(xué)習(xí)基礎(chǔ)、工業(yè)人工智能算法的選擇與應(yīng)用,機器視覺理論基礎(chǔ)與框架、圖像分析基礎(chǔ)和圖像變換、圖像預(yù)處理、邊緣檢測與輪廓表示。智能制造技術(shù)基礎(chǔ)、智能制造典型技術(shù)、智能制造技術(shù)應(yīng)用、機電一體化基礎(chǔ)基本認(rèn)知、可編程控制器(PLC)基礎(chǔ)。信息安全相關(guān)的法律法規(guī):網(wǎng)絡(luò)安全法、數(shù)據(jù)安全法、個人信息保護法。賽題分為三種類型:單項選擇題、多項選擇題和判斷題。理論競賽時間為1小時。由大賽組委會組織專家組統(tǒng)一命題。采用計算機考試。(二)實際操作競賽本賽項的實際操作競賽突出工業(yè)大數(shù)據(jù)算法在工業(yè)生產(chǎn)中的應(yīng)用,針對數(shù)控加工系統(tǒng)中的機器視覺識別準(zhǔn)確性和加工精度穩(wěn)定性問題,通過大數(shù)據(jù)及人工智能算法,實現(xiàn)智能加工的誤差實時補償。實際操作競賽以考核工業(yè)大數(shù)據(jù)及工業(yè)人工智能算法應(yīng)用技術(shù)技能為主,包括圖像數(shù)據(jù)采集、云平臺使用、算法模型訓(xùn)練及優(yōu)化以及安全文明競賽等在實際操作競賽考查。為全面考查參賽選手的職業(yè)綜合素質(zhì)和技術(shù)技能水平,實際技能操作競賽分為5個環(huán)節(jié):硬件設(shè)備搭建、訓(xùn)練數(shù)據(jù)樣本采集、工業(yè)視覺模型訓(xùn)練與部署、誤差補償算法模型訓(xùn)練與部署和模擬生產(chǎn)驗證。具體內(nèi)容見表1。表1競賽范圍與內(nèi)容序號內(nèi)容說明1硬件安裝接線數(shù)據(jù)采集硬件平臺安裝與調(diào)試。智能加工設(shè)備基準(zhǔn)設(shè)置通訊系統(tǒng)建立連接和測試2圖像訓(xùn)練數(shù)據(jù)采集通過工業(yè)視覺進行工件訓(xùn)練樣本數(shù)據(jù)采集,并進行數(shù)據(jù)預(yù)處理。采集足夠訓(xùn)練使用數(shù)量的圖片訓(xùn)練集。樣本數(shù)據(jù)分類保存、云平臺存儲。3工業(yè)視覺模型訓(xùn)練與部署模型訓(xùn)練工具設(shè)置,將訓(xùn)練集配置為模型的制定輸入?yún)?shù)。優(yōu)化模型訓(xùn)練方法,選定恰當(dāng)?shù)募せ詈瘮?shù),以及訓(xùn)練參數(shù)。在云平臺給定環(huán)境中進行模型訓(xùn)練,更新迭代模型,并將訓(xùn)練模型進行固化。優(yōu)化訓(xùn)練算法模型,配置傳入?yún)?shù)。配置結(jié)果應(yīng)用,以接口方式輸出給設(shè)備。4誤差算法模型訓(xùn)練與部署設(shè)計誤差補償模型,或選定恰當(dāng)?shù)哪P?,以及設(shè)定訓(xùn)練參數(shù)。更新迭代模型,將訓(xùn)練完成的模型進行固化。完成誤差實時補償模型部署。驗證誤差補償模型部署效果。5模擬生產(chǎn)驗證正確進行產(chǎn)線動作測試、加載補償算法,通過運動控制單元模擬智能加工進行加工生產(chǎn)驗證。補償參數(shù)微調(diào)。產(chǎn)線生產(chǎn)效率調(diào)整。正確使用防護用具。符合安全操作要求。保持工作區(qū)域內(nèi)場地、材料和設(shè)備的清潔。良好的職業(yè)素養(yǎng)。實際操作部分由參賽選手按工作任務(wù)書的要求完成。具體包含以下工作任務(wù):根據(jù)任務(wù)書給定的任務(wù)要求,選手進行數(shù)控加工裝置、工業(yè)視覺相關(guān)設(shè)備測試,包括相機測試、光源環(huán)境調(diào)試、通訊線路連接、設(shè)備基準(zhǔn)點設(shè)置等。根據(jù)任務(wù)書給定的任務(wù)要求,選手使用視覺系統(tǒng)進行若干工件圖像數(shù)據(jù)采集,以豐富工件樣本圖像數(shù)據(jù)庫。該環(huán)節(jié)所采集到的樣本圖片數(shù)據(jù)的數(shù)量和質(zhì)量將會直接影響后續(xù)的模型訓(xùn)練環(huán)節(jié)。根據(jù)任務(wù)書給定的任務(wù)要求,選手進行基于數(shù)據(jù)采集的樣本圖片進行視覺模型訓(xùn)練,可選擇、調(diào)用云端已提供的完整模型框架(基于TensorFlow),通過設(shè)定相應(yīng)參數(shù)進行模型訓(xùn)練;也允許選手自行搭建視覺模型,上傳云端進行訓(xùn)練。訓(xùn)練好的模型能夠返回待測工件和標(biāo)準(zhǔn)件的相似度。模型訓(xùn)練完成之后,參賽選手需要將模型部署在服務(wù)器上,并且在云平臺上進行相關(guān)適配。根據(jù)任務(wù)書給定的任務(wù)要求,選手基于組委會提供的工件樣本圖片及對應(yīng)的工件加工工藝參數(shù)數(shù)據(jù)集,進行誤差補償算法模型的構(gòu)建。選手需完成數(shù)據(jù)清洗、模型訓(xùn)練、模型部署等過程。模型訓(xùn)練完成之后,參賽選手需要將模型部署在服務(wù)器上,并且在云平臺上進行相關(guān)適配。根據(jù)任務(wù)書給定的任務(wù)要求,選手根據(jù)組委會提供的加工圖紙進行若干個待加工件的生產(chǎn)驗證,軟件導(dǎo)入加工對象的坐標(biāo)集,并通過誤差補償算法使加工出的圖形補償干擾因素造成的誤差,使加工圖形盡可能準(zhǔn)確。最后通過視覺檢測系統(tǒng)進行質(zhì)量驗證。實操比賽時間為4小時。由大賽組委會組織專家組統(tǒng)一命題。四、大賽設(shè)施(一)大賽平臺本賽項由清華大學(xué)大數(shù)據(jù)系統(tǒng)軟件國家工程實驗室、工業(yè)大數(shù)據(jù)應(yīng)用技術(shù)國家工程實驗室、北京工業(yè)大數(shù)據(jù)創(chuàng)新中心和重慶工業(yè)大數(shù)據(jù)創(chuàng)新中心指導(dǎo),對賽項場景設(shè)置、賽題設(shè)計、考核標(biāo)準(zhǔn)等總體技術(shù)方案等進行專業(yè)評估,并對賽項可行性進行綜合認(rèn)證。大賽平臺由技術(shù)支持單位——易往數(shù)字科技(北京)有限公司、深圳市物新智能科技有限公司提供,負責(zé)競賽數(shù)據(jù)環(huán)境構(gòu)建、數(shù)據(jù)驗證等工作,為賽項實際操作競賽提供軟硬件平臺環(huán)境。大賽平臺支撐實際操作競賽全流程閉環(huán)操作,包括工業(yè)大數(shù)據(jù)的采集、處理、存儲、應(yīng)用、誤差補償算法和視覺檢測算法的構(gòu)建、訓(xùn)練、調(diào)優(yōu)和驗證。(二)耗材根據(jù)大賽需要,賽場提供耗材見表2。表2賽場提供耗材(根據(jù)實際需要提供)序號名稱說明數(shù)量單位1待加工件210mm×297mmA4硬卡紙若干個(三)工具、儀器比賽工具(由大賽組委會現(xiàn)場提供)儀器見表3。表3比賽工具、儀器(根據(jù)實際需要提供)序號名稱說明單位數(shù)量1內(nèi)六角扳手7件套1套2十字螺絲刀5×75mm1把3活動扳手小號1把4活動扳手8寸1把5繪圖筆2把(四)選手防護裝備參賽選手必須按照規(guī)定穿戴防護裝備,且只允許選手現(xiàn)場使用表中所示防護用具,見表4,違規(guī)者不得參賽;表4選手必備的防護裝備防護項目圖示說明絕緣鞋選手自備,要求:絕緣、防滑、防砸、防穿刺工作服選手自備(五)其他選手禁止攜帶易燃易爆品、U盤、智能電子設(shè)備等與比賽無關(guān)的物品,違規(guī)者取消比賽資格。五、大賽評分標(biāo)準(zhǔn)制定原則、評分方法、評分細則及技術(shù)規(guī)范(一)評分標(biāo)準(zhǔn)制定原則本著“科學(xué)嚴(yán)謹(jǐn)、公正公平、可操作性強、突出工匠精神”的原則制定評分標(biāo)準(zhǔn),圍繞技能大賽技術(shù)裁判組制定的考核標(biāo)準(zhǔn),依據(jù)參賽選手完成的情況實施綜合評定,全面評價參賽選手職業(yè)能力。(二)評分方法裁判組在堅持“公平、公正、公開、科學(xué)、規(guī)范”的原則下,各負其責(zé),按照制訂的評分細則進行評分。結(jié)果評分:比賽結(jié)束后,裁判組根據(jù)參賽選手提交的比賽結(jié)果進行評分。成績匯總:實操比賽成績經(jīng)過加密裁判組解密后與選手理論成績進行加權(quán)計算,確定最終比賽成績,經(jīng)總裁判長審核、仲裁組長復(fù)核后簽字確認(rèn)。總成績相同時,以實操總成績得分高的名次在前;總成績和實操比賽總成績相同時,模擬加工驗證環(huán)節(jié)得分高的名次在前;總成績、實操比賽總成績和模擬加工驗證環(huán)節(jié)得分相同時,模擬加工驗證環(huán)節(jié)時間短的名次在前。(三)評分細則(評分指標(biāo))理論知識部分總分為100分,各題型分值占比分別為單項選擇題(30分)、多項選擇題(40分)和判斷題(30分)。本次大賽的實際操作部分以工業(yè)大數(shù)據(jù)算法為主,實際操作部分的評分以各競賽環(huán)節(jié)操作完成度、模擬生產(chǎn)驗證的結(jié)果、職業(yè)素養(yǎng)為評分依據(jù)。(1)競賽平臺操作部分評分實操評分細則見表6。表6實操評分細則序號競賽環(huán)節(jié)名稱競賽內(nèi)容與提交要求評分要點和方法評分標(biāo)準(zhǔn)1硬件設(shè)備搭建(5分)相機安裝(配1分)(1)安裝正確且穩(wěn)固:1分(2)安裝松動搖晃:0分依據(jù)硬件設(shè)備情況鏡頭安裝(配1分)(1)鏡頭裝在相機上且穩(wěn)固:1分(2)安裝松動搖晃:0分依據(jù)硬件設(shè)備情況光源安裝(配1分)(1)安裝正確且穩(wěn)固:1分(2)未安裝或不穩(wěn)固:0分依據(jù)硬件設(shè)備情況電纜安裝(配1分)(1)小號環(huán)形光源連接線、相機電源線、千兆網(wǎng)線接線正確:1分(2)工藝不規(guī)范,線纜凌亂:0分;依據(jù)硬件設(shè)備情況加工夾具安裝(配1分)(1)加工夾具安裝牢固,可以生成畫出圖像:1分;(2)安裝不成功或者畫出圖像不連續(xù):0分依據(jù)硬件設(shè)備情況2圖像訓(xùn)練數(shù)據(jù)采集(5分)上傳訓(xùn)練樣本圖片(配1分)(1)成功上傳:1分(2)上傳不成功:0分訓(xùn)練樣本圖片上傳成功標(biāo)準(zhǔn)采集訓(xùn)練樣本圖片(配4分)(1)采集產(chǎn)品圖片≥320張:得4分;(2)采集產(chǎn)品圖片在200-319張之間:得2分;(3)采集產(chǎn)品圖片在1-199張之間:得1分;(4)采集產(chǎn)品圖片0張,不得分;圖像采集數(shù)量參考判斷標(biāo)準(zhǔn)3工業(yè)視覺模型訓(xùn)練與部署(共20分)加載視覺算法訓(xùn)練數(shù)據(jù)集(配2分)(1)完成數(shù)據(jù)加載:2分(2)未完成數(shù)據(jù)加載:0分?jǐn)?shù)據(jù)集加載成功參考判斷標(biāo)準(zhǔn)圖像預(yù)處理(配6分)(1)進行5種及以上有效預(yù)處理方式:6分(2)進行4種有效預(yù)處理方式:5分(3)進行3種有效預(yù)處理方式:4分(4)進行2種有效預(yù)處理方式:3分(5)進行1種有效預(yù)處理方式:2分(6)沒有對圖片進行有效預(yù):0分選手在程序中對圖像樣本進行了有效的預(yù)處理,并將處理方法記錄在任務(wù)書中指定填框中,闡述圖像預(yù)處理方式,并依據(jù)其代碼進行評判。部署視覺算法模型(配2分)(1)部署完成:2分(2)部署不完成:0分視覺算法模型部署成功參考標(biāo)準(zhǔn)完成對算法模型的部署,利用打印出算法模型部署的路徑判斷。驗證視覺算法模型(配10分)(1)識別正確識別率:10分*識別率(2)未完成模型驗證:0分*識別率計算法方式:識別率=識別成功樣本數(shù)量/測試樣本總數(shù)視覺算法識別率判斷標(biāo)準(zhǔn)4誤差算法模型訓(xùn)練與部署(共20分)加載誤差算法訓(xùn)練數(shù)據(jù)集(配2分)(1)完成數(shù)據(jù)加載:2分(2)未完成數(shù)據(jù)加載:0分?jǐn)?shù)據(jù)集加載判斷標(biāo)準(zhǔn)數(shù)據(jù)預(yù)處理(配6分)(1)進行5種及以上有效預(yù)處理方式:6分(2)進行4種有效預(yù)處理方式:5分(3)進行3種有效預(yù)處理方式:4分(4)進行2種有效預(yù)處理方式:3分(5)進行1種有效預(yù)處理方式:2分(6)沒有對數(shù)據(jù)進行有效預(yù):0分選手在代碼中對數(shù)據(jù)進行了有效的預(yù)處理,并將處理方法記錄在任務(wù)書中指定填框中,并闡述數(shù)據(jù)預(yù)處理方式,依據(jù)其代碼進行評判。驗證誤差算法模型(配10分)(1)驗證模型的MSE均方誤差(值的范圍為0-1):10分*(1-MSE)。若得分小于3分則為3分(2)僅完成模型驗證:3分(3)未完成模型驗證:0分*MSE均方誤差計算方式:其中,MSE_i為一個樣本的均方誤差;n表示樣本數(shù)量;y_pred_i表示預(yù)測值;y_true_i表示真實值;Σ表示求和符號。誤差算法模型驗證判斷標(biāo)準(zhǔn)誤差算法模型部署(配2分)(1)部署完成:2分(2)部署不完成:0分誤差算法模型部署判斷標(biāo)準(zhǔn)完成對算法模型的部署,利用打印出算法模型部署的路徑判斷。5模擬加工驗證(共50分)按照指定數(shù)量加工工件得分(配50分)裁判程序顯示的模擬加工驗證分?jǐn)?shù)(滿分100分)*50%輸入裁判程序密鑰,查看模擬加工驗證的成績,并按照50%進行計算。競賽平臺操作得分100分步驟2、3、4、5采用自動評分的方式,由評分軟件根據(jù)每個步驟的操作考核評分點完成結(jié)果自動評分。步驟5為模擬加工,自動評分系統(tǒng)依據(jù)模擬加工后的工件加工精度評分,與對應(yīng)工件視覺檢測準(zhǔn)確性得分加權(quán)相乘,得到單個工件綜合得分Si,對所有模擬加工工件的綜合得分相加得到的總分,作為最終的模擬加工得分。模擬加工得分=i其中,N為要求加工件總數(shù)。最終加工誤差由軟件自動計算得出。(2)職業(yè)素養(yǎng)評分表6職業(yè)素養(yǎng)評分一級指標(biāo)二級指標(biāo)()5分防護用具使用著裝規(guī)范精神文明職業(yè)素養(yǎng)為扣分項。此外,參賽選手如出現(xiàn)嚴(yán)重擾亂賽場秩序、干擾裁判和監(jiān)考正常工作等不文明行為的,取消比賽資格,實際操作部分成績?yōu)?分;參賽選手如有作弊行為的,取消比賽資格,實際操作部分成績?yōu)?分;參賽選手如有在競賽結(jié)果上標(biāo)注含有本參賽隊信息的,取消獎項評比資格。六、大賽硬件平臺說明(一)賽項硬件平臺大賽硬件平臺采用模塊化設(shè)計如圖3,主要由三個部分組成:智能加工模塊、智能視覺檢測模塊、工控機及周邊設(shè)備。涵蓋視覺識別、多軸運動控制系統(tǒng)、PLC控制系統(tǒng)等功能單元,內(nèi)置圖像數(shù)據(jù)采集單元和插補運動控制功能。圖3工業(yè)大數(shù)據(jù)算法技術(shù)技能賽項平臺智能加工模塊是硬件平臺最核心的模塊,由三軸直線模組、多軸運動控制系統(tǒng)、繪圖筆及夾具臺等部件組成。直線模組直線模組模擬加工裝置模擬加工工件圖4智能加工模塊(1)三軸直線模組為步進控制系統(tǒng),X、Y軸有效行程為200mm,Z軸行程為50mm。(2)多軸運動控制系統(tǒng),能夠接收虛擬系統(tǒng)系統(tǒng)的加工代碼,并根據(jù)云端計算的誤差分析結(jié)果自動進行誤差補償,使智能加工單元能夠加工出合格產(chǎn)品。多軸運控系統(tǒng)可以通過上位機通訊實現(xiàn)精確的運動控制指令,輸出脈沖或模擬量指令,支持點位和連續(xù)軌跡,多軸同步,直線、圓弧、螺旋線、空間直線插補和硬件位置比較等功能。(3)繪圖筆及夾具臺主要用于實現(xiàn)加工軌跡,讓加工結(jié)果可視化。智能視覺檢測模塊主要實現(xiàn)對來料物料的視覺樣本采集、視覺檢測識別,使用時固定安裝在三坐標(biāo)模擬加工系統(tǒng)的上部。光源工業(yè)相機光源工業(yè)相機鏡頭圖5智能視覺檢測模塊智能視覺檢測模塊配置如下:(1)2D工業(yè)相機一臺,分辨率2500x1940像素,滾動快門CMOS芯片,芯片尺寸1/2.5”,幀率14fps。相機兼容GigEVISION或USB3VISION協(xié)議,并支持GenlCam標(biāo)準(zhǔn)。(2)鏡頭一個,最大光圈F2.8,均支持500萬像素成像,支持2/3英寸芯片相機成像。(3)環(huán)形光源一個,環(huán)形光源為白色,發(fā)光面外徑120mm,內(nèi)徑80mm。工控機是本地操作臺,由工作臺、工控機、顯示器等部件組成。該單元主要用于調(diào)試模擬加工、運動控制通訊、視覺系統(tǒng)檢測、數(shù)據(jù)顯示與傳輸、平臺數(shù)據(jù)監(jiān)控與調(diào)度、云平臺處理平臺交互等。(二)賽項軟件平臺大賽軟件平臺包含云端算法軟件和本地端應(yīng)用軟件,通過賽場提供的網(wǎng)絡(luò)為大賽提供平臺支撐。云端算法軟件主要由圖像檢測人工智能算法、加工誤差運算補償算法和振動數(shù)據(jù)處理算法等組成。云端算法平臺是本次大賽的考核重點,基于工業(yè)大數(shù)據(jù)技術(shù),形成工業(yè)大數(shù)據(jù)系統(tǒng),可應(yīng)對智能制造背景下海量工業(yè)數(shù)據(jù)采集、存儲、分析、服務(wù)、以及可視化展示需求。該平臺由WEB管理端(前端界面)、Jupyter工作臺、MongoDB數(shù)據(jù)庫、RestfulAPI、算法模型服務(wù)等部分組成,主要用于云端大數(shù)據(jù)算法訓(xùn)練、深度學(xué)習(xí)、數(shù)據(jù)處理等,適用于各類工業(yè)零件的圖像識別分揀、信號特征分析等。圖6云端算法軟件平臺(1)WEB管理端是用戶接入操作的界面。通過WEB管理端對設(shè)備、檢測加工工件、合格不合格分類的配置,可以適配硬件平臺,以及后續(xù)采集數(shù)據(jù)的存儲。圖7WEB管理端用戶界面圖8WEB管理端用戶界面(2)Jupyter工作臺是部署在軟件平臺上的python和TensorFlow的操作運行環(huán)境,集成了大數(shù)據(jù)、人工智能等工具可直接通過工作臺進行操作和使用無需安裝,通過web端即可讀取設(shè)備上傳的數(shù)據(jù),并且可以將上傳的數(shù)據(jù)進行分類、模型訓(xùn)練等,同時可以將訓(xùn)練好的模型進行部署,通過REST-API的方式進行模型的驗證。圖9jupyter操作臺界面(3)MongoDB數(shù)據(jù)庫是用于硬件平臺采集的數(shù)據(jù)存儲的非結(jié)構(gòu)化的大數(shù)據(jù)數(shù)據(jù)庫,可以對文

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論