2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題含解析_第1頁(yè)
2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題含解析_第2頁(yè)
2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題含解析_第3頁(yè)
2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題含解析_第4頁(yè)
2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆安徽省巢湖市匯文實(shí)驗(yàn)學(xué)校高二上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則()A B.C. D.2.青少年視力被社會(huì)普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計(jì)得到圖中右下角名青少年的視力測(cè)量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.3.雙曲線的漸近線方程為()A. B.C. D.4.設(shè)雙曲線的實(shí)軸長(zhǎng)與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.5.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.6.已知,,則在上的投影向量為()A.1 B.C. D.7.設(shè),則的一個(gè)必要不充分條件為()A. B.C. D.8.已知雙曲線的兩個(gè)頂點(diǎn)分別為A、B,點(diǎn)P為雙曲線上除A、B外任意一點(diǎn),且點(diǎn)P與點(diǎn)A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.39.已知圓與拋物線的準(zhǔn)線相切,則實(shí)數(shù)p的值為()A.2 B.6C.3或8 D.2或610.設(shè),隨機(jī)變量X的分布列如下表所示,隨機(jī)變量Y滿足,則當(dāng)a在上增大時(shí),關(guān)于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大11.函數(shù)的最小值為()A. B.1C.2 D.e12.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長(zhǎng)為()A.16 B.8C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若方程表示的曲線是雙曲線,則實(shí)數(shù)m的取值范圍是___;該雙曲線的焦距是___14.與同一條直線都相交的兩條直線的位置關(guān)系是________15.命題,恒成立是假命題,則實(shí)數(shù)a取值范圍是________________16.九連環(huán)是中國(guó)的一種古老智力游對(duì),它用九個(gè)圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國(guó)的末代皇帝溥儀(1906-1967)也曾有一個(gè)精美的由九個(gè)翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個(gè)圓環(huán),用表示按照某種規(guī)則解下個(gè)圓環(huán)所需的銀和翠玉制九連環(huán)最少移動(dòng)次數(shù),且數(shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}的前n項(xiàng)和為Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求證:數(shù)列{an}是等差數(shù)列;(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:.18.(12分)在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),已知直線:mx-(2-m)y-4=0與直線h:x+y-2=0的交點(diǎn)M在第一三象限的角平分線上.(1)求實(shí)數(shù)m的值;(2)若點(diǎn)P在直線l上且,求點(diǎn)P的坐標(biāo).19.(12分)已知函數(shù).(1)設(shè)函數(shù),討論在區(qū)間上的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),()(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),且,證明:.20.(12分)如圖,在三棱錐中,,點(diǎn)P為線段MC上的點(diǎn)(1)若平面PAB,試確定點(diǎn)P的位置,并說明理由;(2)若,,,求三棱錐的體積21.(12分)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.22.(10分)已知數(shù)列的前n項(xiàng)和為,,且(1)求數(shù)列的通項(xiàng)公式;(2)令,記數(shù)列的前n項(xiàng)和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】直接利用向量的坐標(biāo)運(yùn)算求解即可【詳解】因?yàn)?,所以,故選:D2、B【解析】依題意該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B3、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點(diǎn)睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單的幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題4、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因?yàn)椋?,所以的漸近線方程為.故選:C.5、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)椋?,因?yàn)椋?,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)?,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B6、C【解析】根據(jù)題意得,進(jìn)而根據(jù)投影向量的概念求解即可.【詳解】解:因?yàn)椋?,所以,所以,所以在上的投影向量為故選:C7、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項(xiàng):,,,所以是的充分不必要條件,A錯(cuò)誤;B選項(xiàng):,,所以是的非充分非必要條件,B錯(cuò)誤;C選項(xiàng):,,,所以是必要不充分條件,C正確;D選項(xiàng):,,,所以是的非充分非必要條件,D錯(cuò)誤.故選:C.8、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因?yàn)椋?,所以,則故選:C.9、D【解析】由拋物線準(zhǔn)線與圓相切,結(jié)合拋物線方程,令求切線方程且拋物線準(zhǔn)線方程為,即可求參數(shù)p.【詳解】圓的標(biāo)準(zhǔn)方程為:,故當(dāng)時(shí),有或,所以或,得或6故選:D10、A【解析】先求得參數(shù)b,再去依次去求、、,即可判斷出的單調(diào)性.【詳解】由得則,由得a在上增大時(shí),增大.故選:A11、B【解析】先化簡(jiǎn)為,然后通過換元,再研究外層函數(shù)單調(diào)性,進(jìn)而求得的最小值【詳解】化簡(jiǎn)可得:令,故的最小值即為的最小值,是關(guān)于的單調(diào)遞增函數(shù),易知對(duì)求導(dǎo)可得:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增則有:故選:B12、C【解析】根據(jù)雙曲線的漸近線方程的特點(diǎn),結(jié)合虛軸長(zhǎng)的定義進(jìn)行求解即可.【詳解】因?yàn)殡p曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長(zhǎng)為,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.2【解析】由題意可得,由此可解得m的范圍,進(jìn)一步將方程化為標(biāo)準(zhǔn)方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當(dāng)時(shí),方程可變?yōu)椋海藭r(shí)雙曲線焦距為,當(dāng)時(shí),m不存在,不合題意;故雙曲線的焦距:故答案為:;14、平行,相交或者異面【解析】由空間中兩直線的位置關(guān)系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關(guān)系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,15、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實(shí)數(shù)a的取值范圍是,故答案為:.16、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時(shí),,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)數(shù)列通項(xiàng)與前項(xiàng)和的關(guān)系,構(gòu)造新等式,作差整理得到,進(jìn)而求解結(jié)論;(2)求出數(shù)列{an}的通項(xiàng)公式,再代入裂項(xiàng)求和即可.【小問1詳解】證明:因?yàn)椋援?dāng)時(shí),,兩式相減,得到,整理得,又因?yàn)閍n>0,所以,所以數(shù)列{an}是等差數(shù)列,公差為3;【小問2詳解】證明:當(dāng)n=1時(shí),6S1=(a1+1)(a1+2),解得a1=1或a1=2,因?yàn)閍1<2,所以a1=1,由(1)可知公差d=3,所以an=a1+(n﹣1)d=1+(n﹣1)×3=3n﹣2,所以,所以=.18、(1)3(2)【解析】(1)求出直線與直線的交點(diǎn)坐標(biāo),代入直線的方程可得值;(2)設(shè),代入已知等式可求得值,得坐標(biāo)【小問1詳解】由得,即所以,【小問2詳解】由(1)直線方程是,在直線上,設(shè),則,解得,所以點(diǎn)坐標(biāo)為19、(1)答案見解析(2)證明見解析【解析】(1)由題意得,然后對(duì)其求導(dǎo),再分,兩種情況討論導(dǎo)數(shù)的正負(fù),從而可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)結(jié)合零點(diǎn)存在性定理可得在和上各有一個(gè)零點(diǎn),且是的兩個(gè)極值點(diǎn),再將極值點(diǎn)代入導(dǎo)函數(shù)中化簡(jiǎn)結(jié)合已知可得,,從而將要證的結(jié)論轉(zhuǎn)化為證,令,再次轉(zhuǎn)化為利用導(dǎo)數(shù)求的最小值大于零即可【小問1詳解】由,得,則,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),令.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.綜上,當(dāng)時(shí),的增區(qū)間為,無減區(qū)間當(dāng)時(shí),的增區(qū)間為,減區(qū)間為小問2詳解】由(1)知若存在兩個(gè)極值點(diǎn),則,且,且注意到,所以在和上各有一個(gè)零點(diǎn),且時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的兩個(gè)極值點(diǎn).,因?yàn)椋?,所以,所以,即,所以而,所以,所以,要證,即要證即要證:因?yàn)?,所以所以,即要證:即要證:令,即要證:即要證:令當(dāng)時(shí),,所以在上單調(diào)增所以結(jié)論得證.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是將兩個(gè)極值點(diǎn)代入導(dǎo)函數(shù)中化簡(jiǎn)后,將問題轉(zhuǎn)化為證明成立,換元后構(gòu)造函數(shù),再利用導(dǎo)數(shù)證明,考查數(shù)學(xué)轉(zhuǎn)化思想和計(jì)算能力,屬于較難題20、(1)點(diǎn)P為MC中點(diǎn),理由見解析(2)【解析】(1)根據(jù)平面PAB,得到線線垂直,再得到點(diǎn)P的位置;(2)根據(jù)平面PAB,將問題轉(zhuǎn)化為計(jì)算即可.【小問1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點(diǎn).∴若平面PAB,則點(diǎn)P為MC中點(diǎn)【小問2詳解】當(dāng)P為中點(diǎn)時(shí),在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為21、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對(duì)導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時(shí),單調(diào)遞增,得的最大值是,解得,舍去;②時(shí),由,即,當(dāng),即時(shí),∴時(shí),;時(shí),;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時(shí),在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論